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Special Issue on work of the Cooperative Research Centre for Rail Innovation, Australia

Detecting anomalous events at railway
level crossings

Hajananth Nallaivarothayan1, David Ryan1, Simon Denman1,
Sridha Sridharan1, Clinton Fookes1 and Andry Rakotonirainy2

Abstract

Collisions between pedestrians and vehicles continue to be a major problem throughout the world. Pedestrians trying to

cross roads and railway tracks without any caution are often highly susceptible to collisions with vehicles and trains.

Continuous financial, human and other losses have prompted transport related organizations to come up with various

solutions addressing this issue. However, the quest for new and significant improvements in this area is still ongoing. This

work addresses this issue by building a general framework using computer vision techniques to automatically monitor

pedestrian movements in such high-risk areas to enable better analysis of activity, and the creation of future alerting

strategies. As a result of rapid development in the electronics and semi-conductor industry there is extensive deploy-

ment of CCTV cameras in public places to capture video footage. This footage can then be used to analyse crowd

activities in those particular places. This work seeks to identify the abnormal behaviour of individuals in video footage. In

this work we propose using a Semi-2D Hidden Markov Model (HMM), Full-2D HMM and Spatial HMM to model the

normal activities of people. The outliers of the model (i.e. those observations with insufficient likelihood) are identified as

abnormal activities. Location features, flow features and optical flow textures are used as the features for the model. The

proposed approaches are evaluated using the publicly available UCSD datasets, and we demonstrate improved perform-

ance using a Semi-2D Hidden Markov Model compared to other state of the art methods. Further we illustrate how our

proposed methods can be applied to detect anomalous events at rail level crossings.
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Introduction

Rapid development in the semi conductor industry has
led to the ubiquitous deployment of surveillance cam-
eras in public and secure places. Due to their afford-
ability, CCTV cameras are installed anywhere where
monitoring is required. But it is impractical to monitor
all the video feeds with human operators. The need for
several human operators and the difficulties in detect-
ing events as they occur are the main difficulties cur-
rently faced in surveillance. Furthermore it is quite
natural that human operators won’t be able to continu-
ously monitor the video footage due to fatigue and
they won’t capture all the important content in the
surveillance video due to the nature of human visual
perception. This can cause them to miss the most
informative content of the video footage, such as any
crucial events, and eventually results in failures and
holes in the surveillance system. Hence, the rapid
increase in the deployment of CCTV systems and the
challenges posed by direct human monitoring have led

to a greater demand for computer algorithms that are
able to process the video feeds to extract information
of interest for human operators.

Pedestrian safety is of paramount importance to
the rail industry, and one of the biggest sources of
risk for pedestrians and road and rail users alike is
level crossings. The continued impact and resulting
human, financial, and other economic costs associated
with level-crossing incidents has driven various organ-
izations to put more efforts into reducing the number
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of incidents. However, despite the investment and
motivation to improve safety, most analysis con-
ducted to date continues to reveal that errors or vio-
lations on the part of the road user or pedestrian are
the largest contributor to level crossing incidents.

Automated visual surveillance using computer
vision technologies addresses real-time observation
of people and vehicles within a busy environment,
leading to a description of their actions and inter-
actions.1 This has received more research attention
and funding due to increased global security concerns
and an ever increasing need for effective monitoring of
public places such as airports, railway stations, shop-
ping malls, crowded sports arenas, military installa-
tions, and so on, or for use in smart health care
facilities such as daily activity monitoring and fall
detection in old people’s homes.2

Major issues related to surveillance tackled by the
current computer vision researchers are moving object
detection and tracking, object classification, human
motion analysis, and activity understanding, touching
on many of the core topics of computer vision, pat-
tern analysis, and artificial intelligence.1 Human event
detection and behavioural analysis enable use of the
solutions provided for the above issues. Abnormal
event detection is one sub-category of event detection
where the human actions and interactions are categor-
ized as either normal or abnormal.

Event detection is used to categorize one person’s
action into a pre-learned or pre-defined action. But
when it comes to abnormal event detection, this con-
sists of a binary classifying process where there can
only be two possible results (normal or abnormal). An
abnormal event is defined subjectively rather than pre-
defined. In certain contexts an event can be abnormal
while in other contexts it can be very normal. Here the
objective is to detect, recognize or learn interesting
events2 which contextually may be defined as a ‘sus-
picious event’,3 ‘irregular behaviour’,4 ‘uncommon
behaviour’,5 ‘unusual activity/event/behaviour’,6

‘abnormal behaviour’,7 ‘anomaly’,8 and so on.
Feature extraction, training and learning of normal

activity models based on the extracted features of the
training video and finally the classification of new video
as normal or abnormal are the core components of an
anomalous event detection system. As this is an
unsupervised classification process almost all the
models used in existing research are clustering algo-
rithms. Many of these algorithms fail to capture the
temporal and spatial correlation of the activities
through the models. While some of the researchers
have used Hidden Markov Models (HMMs) to
model the temporal behaviour,9–11 the modelling of
spatial causality is omitted in all but a minority of
systems.8,12

In this paper we propose three different types of
HMMs to model both the temporal and spatial caus-
alities. They are the Semi-2D HMM, Full-2D HMM
and Spatial HMM. The Semi-2D HMM models the

current state as being not only dependent on the pre-
vious state in the temporal direction, but also depend-
ent upon the previous states in adjacent spatial
locations (either horizontal or vertical). The Full-2D
HMM is similar to Semi-2D HMM with modifica-
tions made to take into account temporal information
from the adjacent spatial locations through their main
temporal sequences. Spatial HMMs model the current
state as being only dependent on the previous state in
the spatial direction.

For the Semi-2D HMM and Spatial HMM, two
model structures are investigated, modelling the caus-
alities in either the vertical or horizontal direction.
Within the HMM, outliers are detected to locate
abnormal events. The proposed approaches use fea-
tures extracted from spatial blocks and spatio-tem-
poral patches. The features used are the location of
the spatio-temporal block to capture the location-spe-
cific abnormalities, flow features to capture speed
related abnormalities, and textures of optical flow to
capture the anomalies related to the motion
characteristics.13

The remainder of this paper: summarises related
work in this field; describes the features used in the
proposed algorithm; describes the Semi-2D HMM
algorithm, the Full 2D algorithm, and the Spatial
HMM algorithm; presents an evaluation of the pub-
licly available USCD database14; discusses how the
proposed approach can be applied to railway level
crossings; presents conclusions and directions for
further work.

Related work

Event detection using computer vision technologies
has been an active research topic for several years.
Anomalous event detection is a sub-topic of event
detection, where the events are classified into normal
and abnormal activities. Anomalous event detection is
a challenging problem in that it is difficult to explicitly
define an anomaly. Anomalies related to rail level
crossings have their own definition. Most of the past
research was conducted on a global perspective of
anomalous detection but evaluated with certain data-
sets. Those methods can be investigated for the rail
level-crossing related anomalies with a little modifica-
tion according to the context. In this section we sum-
marize the related work in anomalous event detection
on a global perspective.

Over the years, there has been a paradigm
shift from rule-based anomalous event detection
to statistically based methods to achieve a robust
framework to conceptualize semantically meaningful
scene behaviours.2 We can divide the work done
in anomalous event detection into two categories,
called rule-based methods and statistically based
methods.

Early event detection research investigated rule-
based systems where pre-defined rules are used
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to define normal and abnormal activities.15

Their performance was good but their limitation in
defining more and more pre-defined rules restricted
them to be used in only specific types of anomalous
detection. So they are limited in terms of robustness
and scalability especially for unseen events in the
scene.2

Statistical methods provide a means to identify an
anomalous event when it appears, despite the fact that
it has never occurred before.16 Statistical methods can
be subdivided into those that first learn a model of
normal behaviour and use it as a basis to detect
anomalies, and those that automatically learn the
normal and abnormal patterns from the statistical
properties of the observed data, either offline or
online.2 All methods have a common two-step frame-
work: feature extraction and classification using a
learned (online or offline) model.

Feature extraction can be done using both bottom-
up and top-down approaches.

In the context of event detection, a top-down
approach means each individual in the scene is seg-
mented and features are extracted separately.
Anomalous event detection using object tracking is
an example of this approach, where individuals’
object trajectories are obtained and the individuals
with abnormal trajectories are deemed to be perform-
ing an abnormal event. Despite the limitations of tra-
jectory analysis, it has been widely used to detect
abnormalities. Among the trajectory analysis works,
Zhou et al. group similar trajectories using the Edit
Distance (ED);17 Hu et al. associate foreground pixel
masks with extracted trajectories, providing a more
descriptive representation of the activities than trajec-
tories alone;18 and Morris and Trivedi represent tra-
jectories by a series of flow vectors.19 Like Zhou et al.,
Morris and Trevedi group similar trajectories, and an
HMM is trained to represent each characteristic tra-
jectory.19 Vasquez et al. modelled the object’s motion
in terms of an augmented continuous state vector,
composed of two sets of variables describing its cur-
rent and intended (goal) states based on the key obser-
vation that often, objects move as a function of their
intention to reach a particular state (goal).20 This
approach can be effective in a sparsely crowded envir-
onment, though in dense crowds it is very challenging
to track each individual separately due to clutter and
dynamic occlusions.

Bottom-up approaches are stimulus-driven
approaches. Instead of tracking individual objects,
features are extracted that represent the underlying
scene characteristics and crowd behaviour. These
approaches can work very well in densely crowded
environments amidst extensive clutter and dynamic
occlusions. Features extracted for the bottom-up
approaches are at pixel level and are generally referred
to as low-level features.

Xiang and Gong have proposed the Pixel Change
History (PCH) for measuring multi-scale temporal

changes at each pixel.21 Zaharescu and Wildes have
used distributions of spatio-temporal oriented
energy.22 Andrade et al. used optical flow patterns,9

and spatial histograms of the detected objects are
used as the feature by Zhong et al.6 Zhao et al.
used histograms of gradients (HoG) and histograms
of optical flow (HoF).23 Computing these features
can be slow due to the need to calculate dense opti-
cal flow fields for all frames at full resolution.
Additionally, the motion patterns captured by these
algorithms are often incomplete due to the dimen-
sionality reduction or histogram binning process.
Incomplete motion information will cause the anom-
aly detection algorithm to fail in some scenarios.
Ryan et al. proposed a visual representation called
textures of optical flow, which captures both the
smoothness of the flow and the presence of
motion.13 This may be useful for detecting bicycles
or vehicles in a pedestrian scene, for example the
UCSD dataset.14

The various low-level features and object level fea-
tures that are extracted are the input to a learning
model. Popular learning models include HMM,
Petri net,24 LDA,25,26 Support Vector Machine
(SVM) and Markov Random Field (MRF).27

Typically, the algorithms group the video into dif-
ferent clusters for analysis. This can be done in the
spatial domain, time domain, or a three dimensional
spatial–temporal domain. Hierarchical Bayesian
Models are used by Xiaogang et al. to detect anoma-
lies in crowded scenes.26 Similarly Mehran et al. use
LDA and a bag of words methodology to learn a
‘normal’ model, after which frames can be classified
as either abnormal or normal.28 Adam et al. use
histogram binning of the extracted features, while
anomaly detection is done by using a cyclic buffer
to determine the likelihood of new observations.29

Kim and Grauman use a mixture of probabilistic
principal component analysers to model their fea-
tures.27 Hamid et al. represent activities as bags of
event n-grams, where global structural information
of activities is analysed using local event statistics.30

Zhao et al. proposed a fully unsupervised dynamic
sparse coding approach for detecting unusual events
in videos based on on-line sparse reconstructibility of
query signals from a learned event dictionary, which
forms a sparse coding base.23 Further, Ryan et al.
and Greenspan et al. utilized GMMs for their fea-
ture modelling,13,31 while Zhong et al. used K-means
clustering to group the video segments into dis-
jointed sets.6 Mahadevan et al. use a generative mix-
ture of dynamic textures.14 Reddy et al. model the
motion and size features by an approximated version
of kernel density estimation and the texture features
by an adaptively grown codebook.32

The above analysed models generally do not cap-
ture the temporal behaviour of the crowd, such as
repetitiveness and continuity of the activities as these
techniques fail to model the interrelationship
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between individual observations. This will result in
important information relating to the pattern and
duration of the normal activities not being captured
by the learning model, making the detection of
abnormalities more challenging.

HMMs provide a means to capture temporal
dependencies within the detection process. Andrade
et al. use a bank of HMMs trained on normal behav-
iours, and detect a sequence as anomalous when the
likelihood falls below a threshold.9,10 Kratz and
Nishino used the symmetric KL divergence as a dis-
tance measure, and identified spatio-temporal cuboids
in the video sequence by associating local spatio-tem-
poral motion patterns that have a small distance
between them.11 They modified the parameters of
the clusters of Gaussian distributions in an online
manner using the KL distance. After deriving the
prototypes of similar activities represented by the
cuboids in the scene they modelled the temporal rela-
tionship by a Hidden Markov Model for every spatial
location.

Zhang et al. proposed a semi-supervised adapted
HMM framework.33 Snoek et al. used an HMM to
analyse the temporal progression of the affine
features.34 Jiang et al.35 proposed an unusual video
event-detection method based on unsupervised
clustering of object trajectories, which are modelled
by HMMs. Vasquez et al.20 proposed growing
HMMs which they describe as time-evolving
HMMs, with continuous observation variables,
where the number of discrete states, structure, and
probability parameters are updated every time a new
observation sequence is available. These models only
capture the causality in the temporal direction while
the information about the adjacent behaviour is
missed.

Kratz and Nishino also used coupled HMMs to
capture the spatial relationships.8 They used separate
HMMs for each spatial location and during the clas-
sification process they computed spatial confidence
measures using the surrounding HMMs of the cur-
rent HMM, and combined it with a temporal classi-
fier for the detection of anomalous behaviour.
Though they have considered the spatio-temporal
cubes adjacent to the current cube during the classi-
fication, there is no information gathered about the
spatial causality during the training process. Utasi
and Czuni construct their models at two levels, a
region-based continuous distribution HMM, and a
higher-level HMM to inter-link those regional
HMMs that form the first level.12 Here, spatial infor-
mation is missing at the low-level HMMs and only
limited spatial causality can be captured by the high-
level discrete HMM.

While a variety of approaches using HMMs have
been proposed, none of these adequately capture both
the spatial and temporal dependencies in the scene,
leading to a loss of information, and potentially
accuracy.

Feature extraction

We use three features within the proposed system:

(a) location features (center coordinate of a spatial
block) to detect the location-specific anomalies;

(b) motion information (summation of optical flow
vectors inside a block) to identify the anomalies
related to speed of movements of the objects;

(c) textures of optical flow to identify the anomalies
related to the type of motion that is occurring.13

For example, flow may be smooth and constant
or highly variable and turbulent. This feature is
useful for detecting anomalous objects, such as
bicycles and vehicles, and can be computed in
real time.

Features are extracted in spatial blocks as outlined in
the next subsection.

To calculate the optical flow vectors, we have used
Black and Anandan’s algorithm.36 To ensure the pro-
posed approach is computationally efficient, we
downsample the input video. In the proposed
system, we place a greater emphasis on having an
accurate optical flow estimate (i.e. using a robust esti-
mator) than requiring high resolution optical flow
images. We feel this is justified as the anomalous
events and objects are still clearly visible even at
lower resolutions.

The motion features across a block B are given by

�u ¼
X

ðx,yÞ2B

uðx, yÞ ð1Þ

�v ¼
X

ðx,yÞ2B

vðx, yÞ ð2Þ

Textures of optical flow, which measures the uni-
formity of the motion, is computed from the dot
product of flow vectors at different offsets. Having
uniformity measures computed from different offsets
inside a feature vector is useful for detecting objects of
various sizes.13

We evaluate our proposed system with the follow-
ing combinations of the three types of features:

1. All three features: textures of optical flow at vari-
ous scales �f g, motion information (�u, �v) and
location features ðx, yÞ,

f ¼ �ð1,1,0Þ,�ð3,3,0Þ,�ð5,5,0Þ, �u, �v, x, y
� �

ð3Þ

where �ð�,�,0Þ is the uniformity feature value at d
offset.13

2. Optical flow vectors and location features alone,

f ¼ ½�u, �v, x, y� ð4Þ
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Spatial blocks and observation sequences

The spatial blocks and observation sequences used for
HMM input are extracted as follows.

We divide the video frames into non-overlapping
spatial blocks and spatio-temporal patches of differ-
ent configurable sizes. Features are extracted using
each pixel within a block, and are summed to form
the feature vector for the spatial block as well as for
the spatio-temporal patch. During the training pro-
cess an observation sequence of configurable length
is created for each spatial location by collecting the
feature vectors of the blocks belonging to the same
spatial location for consecutive video frames from
the training video data. The feature vector is then
used in the testing to compute the likelihood of the
observation sequence in the presence of the particular
feature vector, and the block is classified as normal or
abnormal based on the likelihood.

The size of the block (7� 7) is chosen, as it is simi-
lar to the size of an interesting object in the testing
dataset used, and other previous work done using this
dataset has used a similar block size.13 The sequence
length is chosen as 20 frames. The number of HMM
nodes chosen is four for pedestrian two dataset and

five for pedestrian one dataset which gave better per-
formance than the other options.

Semi-2D HMM

We propose a Semi-2D HMM to model the extracted
observation sequences from the training video, and to
detect abnormalities. Generally, HMMs are of one
dimension and model the causality in this single dir-
ection. To capture causalities in more than one direc-
tion, various approaches that interconnect separate
HMMs have been proposed, leading to alternate
HMM-type models such as the Multi-Level
HMM,12 and coupled HMMs.8 In the field of image
classification, a form of 2D HMM has been used to
capture the spatial causality of images in both vertical
and horizontal directions.37 However, for a video
task, these 2D HMMs create too many observation
sequences in different directions, making them com-
putationally prohibitive. Here we propose a Semi-2D
HMM which captures the causality in the temporal
direction and the dependencies in adjacent spatial
locations either horizontally (Figure 1(a)) or vertically
(Figure 1(b)).

Figure 1. Schematic diagrams of the proposed Semi-2D HMM. (a) Temporal and spatial dependency diagram of the horizontal Semi-

2D HMM, (b) Temporal and spatial dependency diagram of the vertical Semi-2D HMM and(c) Overall sequence diagram of a Semi-2D

HMM.
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Assumptions of our HMM

The proposed approach makes three key assumptions.
These are:

1. The current state is not only dependent on the pre-
vious state in the temporal direction, but also the
previous states of the adjacent spatial locations.

2. The main observation sequence is in the temporal
direction only (see Figure 1(c), the sequence in full
circles is the main observation sequence).

3. Adjacent spatial observations in one sequence are
part of another main temporal sequence.

Parameters of the HMM

Our HMM consists of N hidden-states which are vis-
ited in the sequence Q ¼ fqt,xg

T
t¼1 at spatial location x

with the adjacent spatial dependency states qt,x�1 and
qt,xþ1 at time t. The set of observationsO ¼ fOtg

T
t¼1 is a

Gaussian function of hidden states. Observations of
adjacent spatial locations are denoted Ot,x�1 and
Ot,xþ1. Here both qt,x and qt denote the state at the t

th

time step at spatial location x, whileOt,x andOt denote
the relevant observation. Our model is based on the
parameters detailed in the following subsections.

Transition probabilities

The transition probability, ag,i,h,j, denotes the prob-
ability of being in state j at time tþ 1, given that the
state of the same location at time t is i and the states
of the adjacent spatial locations at time t are g and h.
Adjacent locations in the horizontal direction are con-
sidered in the case of the horizontal HMM, and adja-
cent locations in the vertical direction are considered
for the vertical HMM. The transition probability for
the horizontal case is

ag,i,h,j ¼ pðqtþ1,x ¼ j jqt,x�1 ¼ g, qt,x ¼ i, qt,xþ1 ¼ hÞ

ð5Þ

Gaussian distribution parameters for likelihood
of observations

The likelihood of an observation which belongs to a
state j is a Gaussian distribution with mean �j and
covariance matrix �j. The probability of an observa-
tion at time t, given that the state is j, is given by

bj ðOtÞ ¼ pðOtjqt ¼ j Þ ¼ N ðOtj�j,�j Þ ð6Þ

Initial probabilities

The initial probability of observing state i is denoted
by �j

�j ¼ pðqt ¼ j Þ ð7Þ

Algorithm

During the training process, model parameters are
optimized in such a way to maximize the likelihood
of the observed sequence. The Baum–Welch algo-
rithm uses expectation maximization, where the like-
lihood of the observations is locally maximized by
iteratively re-estimating the model parameters. The
usual procedure for HMMs is slightly modified for
the calculation of our model’s parameters, as
described below, with the remainder of the procedure
remaining unchanged.38

Forward procedure

This is the probability of observing the partial main
observation sequence, o1, o2, . . . , otf g and tth observa-
tions at adjacent spatial locations ot,x�1, ot,xþ1 with
qt ¼ i

�tðiÞ ¼ pðO1,O1, . . . ,Ot,Ot,x�1,Ot,xþ1, qt ¼ ij�Þ

ð8Þ

The forward probability is calculated using an
inductive algorithm in our work.

Backward procedure

This is the probability of observing the main partial
observation sequence from tþ 1 to the end of the
sequence, and the tth observations at adjacent spatial
locations ot,x�1, ot,xþ1 given qt ¼ i

	tðiÞ ¼ pðOtþ1,Otþ2, . . . ,OT,Ot,x�1,Ot,xþ1jqt ¼ i, �Þ

ð9Þ

The backward probability is calculated using an
inductive algorithm in our work.

Expectation equations

The probability of being in state i at time t, given the
observations O and the model parameters (collectively
denoted �) is given by


iðtÞ ¼ pðqðtÞ ¼ ijO, �Þ ð10Þ

The probability of being in state i at time t, j at time
tþ 1 and in states g, h at time t at spatial locations
x – 1, xþ 1 respectively is denoted as �g,i,h,jðtÞ and
given by equation (22).

Variables of the expected equations are calculated
based on the forward and backward variables in each
iteration of the inductive algorithm.

Full-2D HMM

This model is similar to the model described in the
previous section with modifications in the backward
and forward variables to take account of temporal
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information from the adjacent spatial locations
through the main temporal sequence as shown in
Figure 2.

Parameters of the HMM

This HMM consists of N hidden-states which are vis-
ited in the sequence Q ¼ fqt,xg

T
t¼1, at spatial location x

with the adjacent spatial dependency states qt,x�1 and
qt,xþ1, at time t. The set of observations O ¼ fOtg

T
t¼1 is

a Gaussian function of hidden states. Observations of
adjacent spatial locations are denoted as Ot,x�1 and
Ot,xþ1. Here both qt,x and qt denote the state at the t

th

time step at spatial location x, while Ot and Ot,x

denote the relevant observation. This model is based
on the following parameters:

Transition probabilities

The transition probability, a downg,j, denotes the
probability of being in state j at time tþ 1, given
that the state of the adjacent spatial location (x � 1)
at time t is g.

The transition probability, a directi,j, denotes
the probability of being in state j at time tþ 1,
given that the state of the same spatial location (x) at
time t is i.

The transition probability, a uph,j, denotes the
probability of being in state j at time tþ 1, given
that the state of the adjacent spatial location (xþ 1)
at time t is h.

Adjacent locations in the horizontal direction are
considered in the case of the horizontal HMM, and
adjacent locations in the vertical direction are con-
sidered for the vertical HMM. The transition prob-
abilities for the horizontal case are

a upg,j ¼ pðqtþ1,x ¼ j jqt,x�1 ¼ gÞ ð11Þ

a directi,j ¼ pðqtþ1,x ¼ j jqt,x ¼ iÞ ð12Þ

a downh,j ¼ pðqtþ1,x ¼ j jqt,xþ1 ¼ hÞ ð13Þ

Gaussian distribution parameters for likelihood
of observations

The likelihood of an observation which belongs to a
state j is a Gaussian distribution with mean �j and
covariance matrix �j. The probability of an observa-
tion at time t, given that the state is j, is given by

bj ðOtÞ ¼ pðOtjqt ¼ j Þ ¼ N ðOtj�j,�j Þ ð14Þ

Algorithm

During the training process, model parameters are
optimized in such a way to maximize the likelihood
of the observed sequence. The Baum–Welch
algorithm uses expectation maximization, where the
likelihood of the observations is locally maximized
by iteratively re-estimating the model parameters.
The procedure used in the previous main section
is slightly modified for the calculation of this
model’s parameters, as described below, to take
account of temporal information from the adjacent
spatial locations through the main temporal
sequence with the remainder of the procedure
remaining unchanged.

Forward procedure

This is the probability of observing the partial obser-
vation sequence, o1, o2, . . . , otf g and observation
sequences at adjacent spatial locations are fo1,x�1,
o2,x�1, . . . , ot,x�1g, fo1,xþ1, o2,xþ1, . . . , ot,xþ1g with
qt ¼ i. The formula is given by equation (23), below,
where i is the state number.

The forward probability is calculated using an
inductive algorithm in our work.

Figure 2. Schematic diagrams of the proposed Full-2D HMM.
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Backward procedure

This is the probability of observing the partial obser-
vation sequences from tþ 1 to the end of the
sequences at locations x, x � 1 and xþ 1 given
qt ¼ i. The formula is given by equation (24).

The backward probability is calculated using an
inductive algorithm in our work.

Expectation equations

The probability of being in state i at time t, given the
observations O and the model parameters (collectively
denoted �) is given by


iðtÞ ¼ pðqðtÞ ¼ ijO, �Þ ð15Þ

The probability of being in state g at spatial loca-
tion x � 1 at time t, j at spatial location x at time tþ 1
is denoted as � downg,jðtÞ and given by

� downg,jðtÞ ¼ pðqt,x�1 ¼ g, qtþ1,x ¼ j jO, �Þ ð16Þ

The probability of being in state i at spatial loca-
tion x at time t, j at spatial location x at time tþ 1 is
denoted as � directi,jðtÞ and given by

� directi,jðtÞ ¼ pðqt,x ¼ i, qtþ1,x ¼ j jO, �Þ ð17Þ

The probability of being in state h at spatial loca-
tion xþ 1 at time t, j at spatial location x at time tþ 1
is denoted as � uph,jðtÞ and given by

� uph,jðtÞ ¼ pðqt,xþ1 ¼ h, qtþ1,x ¼ j jO, �Þ ð18Þ

Variables of the expected equations are calculated
based on the forward and backward variables in each
iteration of the inductive algorithm.

Spatial HMM

A Spatial HMM was designed to model the causality
of the scene in the spatial direction. Features extracted
from the spatio-temporal cuboids are used to create
the observation sequences in both the spatial direc-
tions. Two HMMs each for a specific direction are
created based on the spatial observation sequences
from the particular directions. To model the horizon-
tal dependencies, the observation sequence is created
for a y-value (being constant) by considering the
sequential blocks in the x-direction, and observation
sequences are created for each y-value. Similarly the
vertical modelling was done by keeping the x-value
constant and by considering the sequential blocks in
the y-direction. Figure 3 depicts the block diagram of
the model.

In the following subsections, the design of the hori-
zontal HMM is described.

Figure 3. Spatial HMM.
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Assumptions

1. The current state is only dependent on the previ-
ous state in the horizontal spatial direction.

2. State transition probabilities and emission prob-
abilities don’t vary with the spatial location.

Parameters of the HMM

This HMM consists of N hidden states which are vis-
ited in the sequence Q ¼ fqxg

X
x¼1. The set of observa-

tions O ¼ fOxg
X
x¼1 is a Gaussian function of hidden

states. Here qx denotes the state at the spatial location
x at tth time step while Ox denotes the relevant obser-
vation, and X is the sequence length in the horizontal
direction. Further observation sequences are extracted
from each frame that is processed. This model is based
on the parameters in the following sections.

Transition Probabilities

The transition probability, ai,j, denotes the probability
of being in state j at spatial location xþ 1, given that
the state at spatial location x is i. The transition prob-
ability is given by

ai,j ¼ pðqxþ1 ¼ j jqx ¼ iÞ ð19Þ

Gaussian distribution parameters for likelihood
of observations

The likelihood of an observation which belongs to a
state j is a Gaussian distribution with mean �j and
covariance matrix �j. The probability of an observa-
tion at spatial location x, given that the state is j, is
given by

bj ðOxÞ ¼ pðOxjqx ¼ j Þ ¼ N ðOxj�j,�j Þ ð20Þ

Initial probabilities

The initial probability of observing state i is denoted
by �j

�j ¼ pðqx ¼ j Þ ð21Þ

�g,i,h,jðtÞ ¼ pðqt,x�1 ¼ g, qt,x ¼ i, qt,xþ1

¼ h, qtþ1,x ¼ j jO, �Þ
ð22Þ

�iðtÞ ¼ p O1,x, . . . ,Ot,x,O1,x�1, . . . ,Ot,x�1

�

,O1,xþ1, . . . ,Ot,xþ1, qt ¼ ij�
� ð23Þ

	iðtÞ ¼ pðOtþ1,x, . . . ,OT,x,Otþ1,x�1, . . . ,

OT,x�1,Otþ1,xþ1, . . . ,OT,xþ1jqt ¼ i, �Þ

ð24Þ

Algorithm

During the training process, model parameters are
optimized in such a way to maximize the likelihood
of the observed sequence. The Baum–Welch algo-
rithm uses expectation maximization, where the like-
lihood of the observations is locally maximized by
iteratively re-estimating the model parameters. The
usual procedure for HMMs is followed for the calcu-
lation of our model’s parameters, as described
below.38

Forward procedure

This is the probability of observing the partial obser-
vation sequence o1, o2, . . . , oxf g with qx ¼ i

�iðxÞ ¼ pðO1, . . . ,Ox, qx ¼ ij�Þ ð25Þ

The forward probability is calculated using an
inductive algorithm in our work.

Backward procedure

This is the probability of observing the partial obser-
vation sequence from xþ 1 to the end of the
sequence, given qx ¼ i

	iðxÞ ¼ pðOxþ1,Oxþ2, . . . ,OXjqx ¼ i, �Þ ð26Þ

The backward probability is calculated using an
inductive algorithm in our work.

Expectation equations

The probability of being in state i at spatial location x,
given the observations O and the model parameters
(collectively denoted �) is given by


iðxÞ ¼ pðqðxÞ ¼ ijO, �Þ ð27Þ

The probability of being in state i at spatial loca-
tion x, j at time xþ 1 is denoted as �i,jðxÞ and given by

�i,jðxÞ ¼ pðqx ¼ i, qxþ1 ¼ j jO, �Þ ð28Þ

Variables of the expected equations are calculated
based on the forward and backward variables in each
iteration of the inductive algorithm.

Evaluation

Model training

The model is trained on a large video data set con-
taining normal pedestrian activities. Observation
sequences, each of length T, are created from the fea-
ture vectors of the spatial blocks of T consecutive
video frames for the Semi-2D HMM and Full-2D
HMM, while observation sequences for Spatial
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HMMs are created from the feature vectors of the
spatio-temporal cubes aligned in the spatial direc-
tions. Created observation sequences are used to
train the proposed HMM models. As mentioned
above there are two instances of HMMs which are
trained to capture both the horizontal and vertical
spatial causality.

A large number of frames in the training video data
results in a huge number of observations being cre-
ated, thus making the computation process time con-
suming. To avoid this, observation sequences which
don’t have any motion information, i.e that have no
foreground pixels, are filtered out. Filtering is done
based on the number of foreground pixels in the par-
ticular sequence.39 A sequence which contains fewer
foreground pixels than a threshold is omitted from
being added to the training process.

The number of states for the HMMs are chosen,
and individual observations from all the created
observation sequences are hard clustered initially
using the K-Meansþþ algorithm, to find the initial
parameters of the Gaussian distributions belonging
to each state.40 Then, the modified version of the
Baum–Welch algorithm is used to train the model
until it reaches convergence or until the maximum
number of specified iterations is reached.

Experimental evaluation

We have tested our algorithms with the publicly avail-
able UCSD datasets.14 This video dataset contains
bi-directional pedestrian traffic from two camera
viewpoints. Several video sequences (each of 200
frames duration) which contain normal pedestrian
movements are used for the training. The testing
video sequences contain abnormalities, such as the
presence of abnormal objects, anomalous pedestrian

motions and spatial abnormalities, and are annotated
with frame-level ground truth.

We use two different threshold values for our hori-
zontal and vertical HMMs to detect the abnormal
blocks and the frame is classified as abnormal if it
contains an abnormal block. Detection from both
HMMs in our algorithm is compared with the anno-
tated ground truth at frame level and threshold values
are varied to generate an ROC curve. Corresponding
equal error rates (EER) and the area under the curve
(AUC) are obtained.

In order to examine the exact effects of our pro-
posed HMMs, we compare the performance of our
methods (using vertical and horizontal configur-
ations) with a regular HMM (1D) which does not
capture spatial causalities. All other parameters are
equal (block size 7� 7, sequence length 20 frames).
Results (EER and AUC) are shown in Table 1, and
Figures 4–6 show the ROC curves for the Semi-2D,
Full-2D and Spatial HMMs respectively. Table 1
shows that the vertical Semi-2D HMM performs
better than the other HMMs and the one dimensional
version of the proposed approach, and the vertical
version of the Semi-2D HMM performs the best over-
all. In both training and testing videos, the majority of
moving objects are humans and their height is larger
than their width. So the motion information of
humans is spread in the vertical direction rather
than the horizontal direction. This results in adjacent
locations in the horizontal direction having less useful
motion information than the adjacent locations in the
vertical direction, leading to the poor performance of
the horizontal Semi-2D HMM when compared to the
vertical Semi-2D HMM. The performance of the Full-
2D HMM is good for the Ped1 dataset (close to that
of the Semi-2D HMM), though it performs poorly for
the Ped2 dataset, while Spatial HMM performs well

Table 1. Comparison of proposed 2D-HMM with regular HMM (1D). Different combinations of features are shown: ‘ToF’ stands for

Textures of Optical Flow13 and ‘O/F’ stands for Optical Flow based features (equations (1) and (2)).

(Ped1) (Ped1)

Classifier Features EER (%) AUC (Ped2) EER (%) AUC

Proposed Semi-2D-HMM (vertical) ToF, O/F and location 27.64 0.780 11.67 0.928

Proposed Semi-2D-HMM (vertical) O/F and location 21.68 0.859 16.62 0.883

Proposed Semi-2D-HMM (horizontal) ToF, O/F and location 27.42 0.790 22.32 0.882

Proposed Semi-2D-HMM (horizontal) O/F and location 22.79 0.816 31.18 0.702

Proposed Full 2D-HMM (vertical) ToF, O/F and location 25.92 0.818 39.5 0.691

Proposed Full 2D-HMM (vertical) O/F and location 25.76 0.827 36.12 0.654

Proposed Full 2D-HMM (horizontal) ToF, O/F and location 25.32 0.821 31.94 0.753

Proposed Full 2D-HMM (horizontal) O/F and location 25.32 0.821 27.26 0.788

Proposed Spatial-HMM (vertical) ToF, O/F and location 30.79 0.760 14.64 0.916

Proposed Spatial-HMM (vertical) O/F and location 33.85 0.735 19.91 0.881

Proposed Spatial-HMM (horizontal) ToF, O/F and location 32.90 0.757 22.95 0.861

Proposed Spatial-HMM (horizontal) O/F and location 36.75 0.705 25.23 0.846

HMM (1D) ToF, O/F and location 30.12 0.780 16.2 0.921

HMM (1D) O/F and location 22.42 0.831 31.18 0.716
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with Ped2 dataset (close to the performance of the
Semi-2D HMM), though it performs poorly for the
Ped1 dataset.

Textures of optical flow features work well for
Ped2 but not Ped1 as the poor resolution in the far
field of Ped1 is poorly suited to textural type features,
leading to poor detection in the far field and lower
performance overall. Poor performance of Full-2D

HMM in Ped2 dataset is due to lack of training
data, and in future it will be tested with datasets con-
taining sufficient data to evaluate accurate perform-
ance. Spatial HMMs perform well for Ped2 but not
Ped1 due to poor resolution in the far field of Ped1.
The Semi-2D HMM outperforms the Spatial HMM
as it better represents both spatial and temporal
dependencies. Reasons for the better performance of
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Figure 4. ROC curves of Ped1 and Ped2 of both Semi-2D HMMs with different feature combinations. (a) ROC curves of Ped1 of

both Semi-2D HMMs with different feature combinations and (b) ROC curves of Ped2 of both Semi-2D HMMs with different feature

combinations.
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the Semi-2D HMM as compared to the Full-2D
HMM will be investigated in the future.

The performance of our algorithm is compared
with the outcomes of other previous work – the
social force model,28 the MPPCA model of optical
flow,27 the normalized combination of SF-MPPCA,14

the pixel monitoring approach of Adam et al.,29 mix-
ture of dynamic textures,14 textures of optical flow13

and cell-based analysis of foreground speed, size and
texture32 – in Table 2. Values of the EER and AUC
obtained by the above works are depicted in the table.
EER for the Ped1 dataset from the above works lies
between 22.5% and 40%while that of the Ped2 dataset
lies between 12.7% and 42%.13,32

Our method’s performance using the Semi-2D ver-
tical HMM is also shown in Table 2. When all fea-
tures are used, the method performs competitively
with existing approaches, with an EER of 27.64%
for Ped1 and 11.67% for Ped2. Omitting the textures
of optical flow feature degrades performance slightly
for the Ped2 dataset, but improves performance on
Ped1 with an EER of 21.68%.

Our system performs well, detecting the anomalies
such as bicycles of various speeds, vans, skate-
boarders, as well as spatial abnormalities and any
combination of these anomalies. Figure 7 shows
some video frames from both Ped1 and Ped2 datasets
with blocks detected as containing anomalies
highlighted.

Regarding the speed of our algorithm, on aver-
age it takes 0.09 s to process a frame (11 fps) on a
computer with 2.53GHz Intel i5 processor and
4GB memory, running in a single threaded config-
uration, making the algorithm suitable for real-time
deployment (the UCSD dataset is captured at
10 fps).

Application to railway crossings

The models proposed in this work can be used to
model the pedestrian activities at a railway level cross-
ing. Temporal causalities and spatial causalities can
both be captured by the proposed approaches.
Models can be trained from video footage containing
the normal activities of the pedestrians, and, during
the real-time monitoring of the surveillance video,
outliers of the learned models will be detected as
anomalies.

At a railway level crossing we can define two main
contexts relating to pedestrian activities: time periods
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Figure 6. ROC curves of Ped1 and Ped2 of both Spatial HMMs with different feature combinations. (a) ROC curves of Ped1 of both

Spatial HMMs with different feature combinations and (b) ROC curves of Ped2 of both Spatial HMMs with different feature

combinations.

Table 2. Performance on the UCSD datasets.14 Equal error

rate (EER) is reported. ToF stands for Textures of Optical

Flow13 and O/F stands for Optical Flow based features

(equations (1) and (2)).

System

EER (%)

Ped1 Ped2

SF28 31 42

MPPCA27 40 30

SF-MPPCA14 32 36

Adam29 38 42

MDT14 25 25

Ryan13 23.1 12.7

Reddy32 22.5 20

Proposed Semi-2D HMM (With ToF, O/F

and Location)

27.64 11.67

Proposed Semi-2D HMM (With O/F

and Location)

21.68 16.62
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during the arrival of the train and all other time
periods.

During the arrival of the train, rail gates are closed
and people are not supposed to move through the level
crossings. In this context, the presence of any human
object should be detected as an anomaly. Using our
developed model, a spatial anomaly can be located in
the scene as shown in Figure 7(e). As the proposed
system is capable of real-time operation, an alarm
can be flagged as soon as such an event is detected.
This alarm could result in a variety of measures,
including systems to alert both pedestrians and railway
guards, and potentially even alerting the train driver of
the potential danger (ultimately these measures would
depend on what other subsystems were present). While
the utility of this alarm may vary from site to site and

event to event (i.e. if a pedestrian enters the tracks at
the same moment as the train arrives there is little that
can be done), it is reasonable to expect it to be of bene-
fit in environments where there is a delay between the
crossing being closed and trains arriving (for instance,
in Queensland, Australia, level crossings close 1–2m
before a train arrives). Furthermore, the act of forcing
or climbing over the gate is also likely to trigger an
alarm as it constitutes abnormal behaviour, thus
potentially offering a few extra seconds warning.

During the second context (that is, the rest of the
time period where trains are not supposed to arrive and
gates are opened so that pedestrians can cross the
track), anomalies may include a person running, a
person falling and the presence of other abnormal
objects such as bicycles or vehicles. Using our

Figure 7. Representative frames demonstrating the proposed anomaly detection algorithm. The left column is from dataset ‘Ped1’

and the right column is from ‘Ped2’.14 (a) Bicycle (bottom center) and spatial anomaly (bottom right), (b) Skateboard is detected,

(c) Skateboard is detected, (d) Two bicycles are detected, (e) Spatial abnormality, (f) Vehicle (centre) and bicycle (right) are detected,

(g) Vehicle is detected, and (h) Bicycle moving slowly is detected.
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developed model, anomalies such as these can be
detected (see Figure 7(c), a speed related anomaly
caused by a skateboarder is detected; and Figure 7(g),
where a vehicle is detected). In this second context, the
proposed approach could be particularly useful for
detecting incidents involving people with a disability,
children and elderly people. Furthermore, the proposed
approach would also aid in gathering statistics of events
and near-misses. Such data could be helpful in aware-
ness programs related to railway pedestrian safety, or in
identifying ways to further improve safety.

The context could be switched based on the traffic
signals, i.e. the first context can be enabled when a
train arrives and the other context can be set by
default. Future work will focus on the development
of models that enable event detection in multiple con-
texts, as well as evaluations of abnormal event detec-
tion with railway level-crossing video footage.

Conclusion and future work

We have proposed new variants of 2D HMM tech-
niques for anomaly detection. These approaches cap-
ture both the temporal and spatial causality of a
training sequence, and the Semi-2D HMM performs
well when detecting the anomalies compared to other
state of the art algorithms as well as the equivalent 1D
HMM in terms of accuracy and speed. The Full-2D
HMM and Spatial HMM also perform well in certain
scenarios, though are less consistent than the Semi-2D
HMM due to lack of training data and lack of ability
to model both the temporal and spatial causalities
respectively. Further reasons will be investigated in
the future.

The proposed methods can be used to capture
abnormal events such as a person falling, a person
running, the presence of skate boarders and presence
of other vehicles at the railway level crossings.
Further, these methods can be used to study normal
behaviour on rail crossings in different contexts.

Future work will involve investigating different
features and combinations of features, as well as evalu-
ations of other datasets, specifically railway level-
crossing data.Multi-context models and the automatic
detection of different contexts will also be investigated.
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