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Automated crowd counting has become an active field of computer vision research in recent years. Exist-
ing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that
was used to train the system. Real world camera networks often span multiple viewpoints within a facil-
ity, including many regions of overlap.

This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate
across multiple cameras. The approach uses camera calibration to normalise features between view-
points and to compensate for regions of overlap. This compensation is performed by constructing an
‘overlap map’ which provides a measure of how much an object at one location is visible within other
viewpoints. An investigation into the suitability of various feature types and regression models for scene
invariant crowd counting is also conducted. The features investigated include object size, shape, edges
and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear
and Gaussian process regression.

Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark
datasets, with optimal performance observed when all features were used and when Gaussian process
regression was used. The combination of scene invariance and multi camera crowd counting is evaluated
by training the system on footage obtained from the QUT camera network and testing it on three cameras
from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of
less than 10%.

Our approach enables a pre-trained system to be deployed on a new environment without any addi-
tional training, bringing the field one step closer toward a ‘plug and play’ system.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Automated crowd counting has become an active field of com-
puter vision research in recent years. Crowd size is the most com-
mon indicator of security threats such as rioting, violent protest
and mass panic, and it can also indicate congestion and other
abnormal events within peaceful crowds. Crowd information can
also be used to provide operational analytics for business
intelligence.

Existing approaches to crowd counting are scene specific, as
they are designed to operate in the same environment that was
used to train the system. In a facility containing numerous cam-
eras, this requires each viewpoint to be trained independently,
which can be an arduous and time consuming task. It is not prac-
tical to supply hundreds of frames of ground truth for every view-
point. In this paper, a novel algorithm is proposed which utilises
camera calibration to achieve scene invariance by scaling features
appropriately between viewpoints. This enables the system to be
deployed on different training and testing sets, including those
captured at different locations.

In practice, this means that a system can be trained on a bank of
‘reference viewpoints’, and then deployed on any number of new
viewpoints without any additional ground truth annotations being
required, greatly reducing the time and cost of configuring a crowd
counting system. To facilitate the development of this technique,
an investigation into various features and regression models for
scene invariant crowd counting is conducted to determine the best
combination in practice.

Another limitation of existing methods is that they are designed
to count crowds within a single camera viewpoint, whereas real-
world camera networks span multiple viewpoints within a facility,
including some regions of overlap. Since some individuals will be
detected across multiple cameras, it is necessary to compensate
for this overlap to avoid over-estimation of the total number of
people. This paper extends crowd counting across multiple cam-
eras by utilising camera calibration parameters. An ‘overlap map’
is calculated which provides a measure of how much an object at
one location is visible within other viewpoints, and this is used
to modify crowd density on a pixelwise basis.
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The proposed algorithm is tested on seven datasets which uti-
lise camera calibration: PETS 2009, Views 1 and 2 (PETS, 2009);
PETS 2006, Views 3 and 4 (PETS, 2006); and QUT, Cameras 3, 5
and 8 (Section 5.2). These datasets feature crowds of size 1 to 43
people in various lighting conditions and differing camera angles.
The system is demonstrated to be scene invariant and capable of
supporting multiple cameras, with accurate crowd counting
results.

The details of the scene invariant crowd counting algorithm
have been previously published in Ryan et al. (2012). This paper
makes a number of additional contributions:

1. A comprehensive investigation into optimal feature sets
and regression models for scene invariant crowd counting.

2. An extension to multi camera environments, allowing the
total number of people across a scene to be estimated.

3. A combination of scene invariance and multi camera crowd
counting algorithms, which is evaluated on a three-camera
setup.

The remainder of this paper is structured as follows: Section 2
reviews the existing crowd counting literature; Section 3 describes
the proposed scene invariant crowd counting algorithm; Section 4
extends this algorithm to operate across multiple cameras;
Section 5 presents the evaluation protocol and benchmark data-
sets; Section 6 presents the experimental results of our algorithm;
and Section 7 presents conclusions and directions for future work.
2. Background

Current approaches to crowd counting generally employ super-
vised machine learning techniques to map between the image fea-
ture space and the crowd size estimate. Regression is performed at
either the holistic level of an image (Davies et al., 1995; Kong et al.,
2006; Chan et al., 2009) or at a local scale (Kilambi et al., 2008;
Ryan et al., 2009; Lempitsky and Zisserman, 2010).

Holistic image features include textural statistics (Marana et al.,
1997), Minkowski fractal dimension (Marana et al., 1999) and
translation invariant orthonormal Chebyshev moments (Rahmalan
et al., 2006). Holistic textural features such as these are sensitive to
external changes, and for outdoor environments the natural fluctu-
ations in lighting between morning and afternoon have been
shown to reduce system performance (Rahmalan et al., 2006). A
number of algorithms use background modelling techniques
(Stauffer and Grimson, 1999; Denman, 2009) in order to identify
pedestrians in the foreground. Davies et al. (1995) modelled the
relationship between foreground pixels and crowd size using linear
regression, and subsequent approaches have attempted to deal
with perspective and occlusion. Paragios and Ramesh (2001) intro-
duced the use of a density estimator to account for perspective and
Ma et al. (2004) computed a density map which weighted each pix-
el by the area it represented on the ground plane. The sum of
weighted foreground pixels is used as a measure of crowding.

Kong et al. (2006) proposed the use of histogram based features
to capture the various levels of occlusion present in a scene. Fore-
ground ‘blob’ segments were aggregated into size-based histo-
grams, and an edge orientation histogram was constructed based
on the gradient directions. The edge orientation histogram is used
to help distinguish between humans and other structures in the
scene (Kong et al., 2006). Similar features have been used in other
visual surveillance research, such as the histogram of oriented gra-
dients employed by Dalal and Triggs (2005) for the explicit purpose
of human detection.

A unique segmentation technique was used by Chan et al.
(2008) to identify foreground motion in two directions, based on
the mixture of dynamic textures. A large number of holistic image
features were extracted including foreground area, perimeter pixel
count, edge orientation histogram and textural features. In total, 29
features were extracted and Gaussian process regression was used
to predict the number of pedestrians walking in each direction.

Local approaches to crowd counting utilise detectors or features
which are specific to individuals or groups of people within an im-
age. Lin et al. (2001) has proposed the use of head detection for
crowd counting. The Haar wavelet transform was used in conjunc-
tion with the support vector machine to classify head-like contours
as human.

Celik et al. (2006) proposed a person-counting algorithm which
did not require training: it assumes proportionality between the
number of pixels within a blob segment and the number of people
represented by that segment, in order to obtain an estimate for
each group. Kilambi et al. (2008) models a group of pedestrians
as an elliptical cylinder, assuming a constant spacing between peo-
ple within the group. Lempitsky and Zisserman (2010) proposed an
object counting algorithm which sought to estimate a density func-
tion of the pixels in an image, so that integrating the density over
any region would yield the number of objects in that region. This is
a localised approach in which every pixel is represented by a fea-
ture vector containing foreground and gradient information, and
a linear model is used to obtain the density at each pixel.

These approaches rely on scene-specific training data which re-
quires a system to be trained and tested on the same viewpoint,
using potentially hundreds (Kong et al., 2006) or thousands (Chan
et al., 2009) of annotated training frames. Even though large-scale
CCTV networks are becoming increasingly common, automated
crowd counting is not widely deployed. One of the largest barriers
to full deployment of this technology is the requirement to train
each camera independently, which is both time-consuming and
expensive.
3. Scene invariant crowd counting

This section describes a scene invariant crowd counting algo-
rithm which can be trained and tested on different cameras. The
system is trained on a bank of ‘reference viewpoints’ before being
deployed on any number of unseen viewpoints, without any addi-
tional training requirements.

The approach is based on camera calibration, which is used to
normalise features across viewpoints. This algorithm was origi-
nally published in Ryan et al. (2012, 2011) and the details of the
approach are discussed in this section. Furthermore, this paper ex-
tends the approach by utilising additional image features, and Sec-
tion 6.1 investigates various combinations of these features to
determine the best approach in practice. The algorithm is extended
to multi camera environments in Section 4.

This section is structured as follows: Section 3.1 describes how
scene invariance is achieved through the use of a ‘density map’ to
normalise features; Section 3.2 describes the feature extraction
process; and Section 3.3 outlines the procedure used to train the
system.
3.1. Scene invariance

Scene invariance is achieved by scaling the features extracted
from each pixel to normalise for camera position and orientation.
A density map, S, is constructed based on camera calibration
parameters. The density map supplies a weight, Sði; jÞ, to each pixel,
which is used to scale the features extracted from that pixel. This
approach has been used previously to compensate for the effects
of perspective within a single image (Section 2), however in this
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paper we use the density map to achieve normalisation across dif-
ferent scenes.

The density map is calculated from camera calibration. A num-
ber of camera calibration methods have been described in the lit-
erature (Abdel-Aziz and Karara, 1971; Tsai, 1986; Zhang, 2000),
although the most popular of these is Tsai’s model (Tsai, 1986,
1987), which is frequently used on visual surveillance databases
such as PETS 2006 and PETS 2009 (PETS, 2006, 2009). Tsai’s model
incorporates camera position, rotation angle, focal length and ra-
dial lens distortion parameters to map between the real world
coordinate system ðx; y; zÞ and the image plane ði; jÞ. A number of
automated procedures also exist for estimating camera calibration
based on human or object tracking (Bose and Grimson, 2004; Lv
et al., 2002; Krahnstoever and Mendonca, 2005). These approaches
could readily be incorporated into the proposed framework. How-
ever, as Tsai calibration parameters are already available for public
visual surveillance datasets, and the method is widely used and
well understood, Tsai’s model has been used in this research.

Quasi-calibration methods have also been used previously to
achieve perspective normalisation within a single image (Paragios
and Ramesh, 2001; Ma et al., 2004; Chan et al., 2008). Typically, a
reference pixel near the bottom of the image is assigned the weight
1.0 and all other pixels are weighted with respect to this reference.
For example, pixels higher in the image will be given a larger value
because they represent a greater area in the scene. Quasi-calibra-
tion methods use relative object sizes, such as pedestrians (Chan
et al., 2008) or roadway width (Ma et al., 2004), in terms of pixels,
without taking into account real world measurements. Although
these approaches are suitable for compensating for perspective
within a single image, the scene invariance proposed in this paper
requires a real world basis. For this reason Tsai’s model is selected.

In the proposed system, a 3D cylinder model of a fixed size is
used to approximate the size of a human. The cylinder has a radius
of r ¼ 0:25 m and a height of h ¼ 1:7 m. As depicted in Fig. 1, this
cylinder may be projected into a scene centred around any pixel
ði; jÞ.

The cylinder is projected into the scene at every location using
camera calibration as follows. Firstly each image coordinate ði; jÞ is
taken to correspond to the centre of a hypothetical person (or a cyl-
inder model representing them). This is converted to the real world
position ðpx; py; pzÞ with pz ¼ h

2 at the centre of the model. The top
and bottom circles are positioned at a height of z ¼ h and z ¼ 0,
respectively. Each circle is approximated using a 20-sided polygon,
whose vertices are projected back into the image plane and joined
together using a number of straight lines, imitating curvature. The
sides of the cylinder model are also drawn using straight lines in
the image plane. The notation Ri;j is used to represent the cylinder
model centred around pixel ði; jÞ, and jRi;jj represents the area of
this template in the image plane.

The density map is constructed using the inverse of the cylinder
model’s projected area, at every location within the image:
Sði; jÞ ¼ 1
jRi;jj

ð1Þ

Therefore the value of the density map at any location is based
on the size of a fixed real world object, centred at that location. This
density map provides a weight to each pixel so that an object occu-
pying a set of pixels, B, has a weighted area of

P
ði;jÞ2BSði; jÞ. Conse-

quently distant objects occupying fewer pixels are compensated by
their larger weights in the density map.

The use of camera calibration in constructing the density map,
rather than an arbitrary ‘reference’ pixel or shape, is advantageous
because it is defined in terms of a fixed real-world object; this ap-
proach can scale readily between different camera angles and is
inherently scene invariant. It does not matter that the cylinder
model does not match a human size or shape precisely, as its role
is only to normalise features across viewpoints.

The extraction of these features and the usage of the density
map S are described in the subsequent section.

3.2. Feature extraction

Background modelling is a fundamental step in many surveil-
lance systems, and it forms the backbone of the proposed algo-
rithm. The background model allows subsequent tasks to be
performed, such as foreground detection, group segmentation
and feature extraction. We use the approach described in Denman
(2009) and Denman et al. (2007, 2009) to generate the foreground
binary mask.

In the proposed crowd counting algorithm, a crowd estimate is
obtained for each foreground ‘blob’ segment in an image, so that
the total estimate for the scene is the sum of the estimates for each
individual blob. In order to train the system, ground truth annota-
tion is performed by explicitly labelling the number of people rep-
resented by each blob in an image, therefore each frame provides
several instances of ground truth. The details of this annotation
process is discussed in Ryan et al. (2012).

Feature extraction is performed as a subsequent step to group
segmentation, and the density map (Section 3.1) is used to weight
the features extracted from each pixel in order to achieve normal-
isation across scenes (and within an image to compensate for
perspective).

In general, the features used for crowd counting can be catego-
rised under the following headings:

1. Size refers to the magnitude of any interesting segments
extracted from an image which are deemed to be relevant,
such as the foreground pixel count (Section 3.2.1).

2. Shape pertains to the orientation and shape descriptors of
these segments detected in an image (Section 3.2.2).

3. Edges refer to the relative change in pixel intensities across
an image, measured using a binary edge detector
(Section 3.2.3).

4. Keypoints are any other points of interest, such as corners,
that are detected in an image (Section 3.2.4).

3.2.1. Size
Size refers to the magnitude of any detected regions, such as

foreground motion segments, in an image. Davies et al. (1995) pro-
posed the use of the foreground pixel count as a measure of the
holistic crowd size, while Ma et al. (2004) introduced the density
map to weight each foreground pixel to compensate for
perspective.

The set of foreground pixels within the region of interest (ROI)
is denoted B. The foreground is segmented into a set of connected
components, which are individually labelled, and enumerated by
n. The notation Bn is used to represent the set of pixels which be-
long to the nth blob. The collection of blobs fBng is a partition of
the set B.

The weighted area of each blob is denoted An. This is calculated
using the density map, S, to account for perspective:

An ¼
X
ði;jÞ2Bn

Sði; jÞ ð2Þ
Another size feature is perimeter length. The set of perimeter
pixels Pn is obtained by tracing along the boundary of the nth blob.
Perimeter pixels are a one-dimensional feature, and are thus
weighted using the square root of the density map S as in Chan
et al. (2008). The weighted perimeter of the nth blob segment is
therefore calculated as follows:



(a) Camera 3. A camera calibration technique [23] is used to project a 
prototypical human-sized cylindrical object into the scene at any location. 
This hypothetical cylinder model is used to construct the density map S (i, j) 
at every pixel (Equation 1). The density map is used to normalise features to 
achieve scene invariance. Only a sparse subset of the cylinder models are 
shown here; however, the system constructs them around every pixel (during 
initialisation of the system only).

(b)  Camera 5. (c)  Camera 8.

Fig. 1. Images from the QUT camera network.
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Ln ¼
X
ði;jÞ2Pn

ffiffiffiffiffiffiffiffiffiffiffi
Sði; jÞ

q
ð3Þ

The perimeter length may provide valuable size information when
the foreground segment erroneously contains ‘holes’. It also supple-
ments the area feature to provide a more complete description of
group size.
3.2.2. Shape
Perimeter pixels provide valuable shape information about an

object. Aside from the perimeter length, which measures the object
size, the orientation of the perimeter pixels also contain important
shape information. Such features have been used previously in
Chan et al. (2008) and Denman et al. (2007).

Perimeter pixels are easily detected by tracing around the
boundary of an object. It is intuitive and computationally efficient
to use an orientation histogram with 4 bins, each corresponding to
the direction of an adjacent pixel ð0

�
;45

�
;90

�
;135

�
Þ. When tracing

the perimeter from one boundary pixel to the next, the direction of
movement determines which histogram bin receives the pixel’s
vote.
The vote weight is the square root of the density map,
ffiffiffiffiffiffiffiffiffiffiffi
Sði; jÞ

p
,

as perimeter pixels are a one dimensional feature. Vertical edges
are more likely to indicate individuals in a scene, whereas a com-
bination of many perimeter pixels at all orientations may indicate
larger crowds.

The four shape features stored in the perimeter orientation his-
togram are denoted VnðhÞ, for h 2 ½0;3�.
3.2.3. Edges
Edges have been commonly used in crowd counting systems.

For example, Kong et al. (2006) introduced the use of an edge angle
histogram on a holistic scale, while Davies et al. (1995), Chan and
Vasconcelos (2008) and many others have used the total number of
edge pixels on a holistic level, regardless of orientation.

In the proposed algorithm, an edge orientation histogram is
constructed for each foreground segment in an image using the fol-
lowing procedure. The set of edge pixels belonging to the nth blob
segment is denoted En, and a histogram of edge orientations Hn is
constructed by allocating each edge pixel to a histogram channel,
based on the pixel’s orientation \Gði; jÞ. The orientation bins are
evenly divided over the range ½0;p�, and a total of 6 bins are used.
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Each edge pixel within the blob contributes a weighted vote to a
histogram bin. This contribution (or vote) is equal to the square
root of the density map,

ffiffiffiffiffiffiffiffiffiffiffi
Sði; jÞ

p
, to normalise for perspective. If

the value of the hth histogram bin is denoted HnðhÞ, and the orien-
tation angle for that bin is lower-bounded by hh:

HnðhÞ ¼
X
ði;jÞ2En

ffiffiffiffiffiffiffiffiffiffiffi
Sði; jÞ

p
if hh 6 \Gði; jÞ < hhþ1

0 otherwise

(
ð4Þ
The edge orientation histogram ‘‘can distinguish edges caused
by pedestrians, which are usually vertical, with other scene struc-
tures such as noise, shadows and cars’’ (Kong et al., 2006). Vertical
edges are considered to be most indicative of human crowding, be-
cause they are ‘‘really important for detecting the bodies (i.e. legs
and arms)’’ (Regazzoni et al., 1993). Edges also help to identify
occlusions when multiple pedestrians partially block one another
from view. Although the blob’s size features are reduced by occlu-
sions, the edge features become stronger due to the overlapping
body parts, differing skin tones and conflicting clothing.

Canny edge detection is used due to its use of non-maximum
suppression and hysteresis thresholding which results in a cleaner
output.

3.2.4. Keypoints
Keypoints refer to specific pixels of interest, such as corners,

which are detected in an image. Keypoints are useful for detect-
ing salient points of interest in a scene, and these are often
indicative of human crowding. For example, Conte et al. (2010)
used speeded-up robust features (SURF), as introduced by Bay
et al. (2008), to detect keypoints within an image. These points
were masked by optical flow so that stationary points were ig-
nored. The number of moving keypoints was used to predict
crowding. Similarly, Albiol (Albiol and Silla, 2009) utilised Harris
corners (Harris, 1988) to estimate crowd size on a holistic level.

Two types of feature detectors are considered for the proposed
algorithm. Firstly, corners are detected using the ‘FAST’ algorithm
recently proposed by Rosten et al. (2010), and the set of keypoints
detected within the foreground blob segment n is denoted jFAST

n .
Secondly, SURF keypoints (Bay et al., 2008) are extracted and this
set of keypoints is denoted jSURF

n .
The two keypoint features are then calculated as follows:

KFAST
n ¼

X
ði;jÞ2jFAST

n

ffiffiffiffiffiffiffiffiffiffiffi
Sði; jÞ

q
ð5Þ

KSURF
n ¼

X
ði;jÞ2jFAST

n

ffiffiffiffiffiffiffiffiffiffiffi
Sði; jÞ

q
ð6Þ

Note that the notation jFAST
n is used to refer to a set of keypoints,

while KFAST
n represents the scalar keypoint feature that is calculated

from this set.
The keypoints are masked by the foreground detection result

(the summation only takes place across each foreground segment),
so that keypoints belonging to background objects and surround-
ing structures are not included in the feature vector.

3.2.5. Full feature vector
The full feature vector used to represent blob n is denoted xn

and is comprised of size, shape, edge and keypoint features:

xn ¼ ½An; Ln;Vnð0Þ; . . . ;Vnð3Þ;Hnð0Þ; . . . ;Hnð5Þ;KSURF
n ;KFAST

n � ð7Þ

Various subsets of these features are evaluated in Section 6.1.1
to determine the optimal feature set.
3.3. System training and testing

Training is performed on the local level by annotating each blob
with the number of pedestrians contained therein, as described in
Ryan et al. (2012). The number of people represented by the nth
blob in the training dataset is denoted fn, and the feature vector ex-
tracted from this segment is denoted xn. In order to train the pro-
posed system, a regression function must be learned using the set
of training examples, fxn; fngN

n¼1, to count the number of people
present in each group. In this case we use n to enumerate all of
the blobs observed in the entire training dataset, rather than just
one frame.

Existing approaches use linear regression (Davies et al., 1995;
Kong et al., 2006; Ryan et al., 2010), neural networks (Marana
et al., 1997; Kong et al., 2006; Ryan et al., 2009) and Gaussian pro-
cess regression (Chan et al., 2008). Although the linear model has
demonstrated acceptable performance on single datasets, it is not
clear that the relationship between the image features and crowd
size is indeed linear across all operating conditions and viewpoints.
We adopt Gaussian process regression (GPR) because it does not
place any prior assumptions on the functional relationship be-
tween the features and the crowd size.

The Gaussian Process may be thought of as an infinite collection
of random variables, any finite subset of which have a joint Gauss-
ian distribution (Rasmussen, 2004). The targets f ¼ ffng are envi-
sioned as a sample from this distribution:

f � Nð0;KÞ ð8Þ

where the covariance matrix K 2 RN�N is defined by a function
kðxn;xmÞ which relates the covariance of outputs as a function of
inputs:

Knm ¼ kðxn; xmÞ ð9Þ

The subscripts n and m represent the indices of two samples. A typ-
ical covariance function is the squared exponential (Rasmussen,
2004) which enforces a high covariance when the samples are close
within the input space. This captures the intuition that similar in-
puts produce similar outputs. Samples from the test data are also
envisioned as belonging to this joint distribution,

f
f�

� �
� N 0;

K K�

K�T K��

� �� �
ð10Þ

where f� ¼ ff �n g denotes the unseen targets in the test dataset, and
the covariance submatrices are calculated as follows:

K�nm ¼ kðxn; x�mÞ ð11Þ

K��nm ¼ kðx�n; x�mÞ ð12Þ

where x�n and x�m denote feature vectors in the test set. Following
from Eq. (10), prediction using GPR is performed by conditioning
the outputs on the training data:

f�jf � Nðl;RÞ ð13Þ

where:

l ¼ K�T K�1f ð14Þ

R ¼ K�� � K�T K�1K� ð15Þ

The point estimates for f� are represented by l and the variance for
each estimate is represented by the diagonal elements of R which
can be used to generate confidence intervals.

The covariance function used in our system is adopted from
previous crowd counting applications (Chan et al., 2008; Ryan
et al., 2012):
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kðxn; xmÞ ¼ a2
1 exp

jxn � xmj2

�2‘2

 !
þ a2

2ð1þ xT
nxmÞ þ a2

3dn;m ð16Þ

This function is comprised of a squared exponential term which
captures short-range trends in the data; a linear term which cap-
tures long-range trends; and a noise term which contributes only
to the diagonals of the covariance matrix. The hyperparameters
fa1; ‘;a2;a3g are selected automatically during training to optimise
the log-likelihood of the observed training data (following from Eq.
(8)):

log pðfÞ ¼ �1
2

fT K�1f � 1
2

log jKj � N
2

log 2p ð17Þ

This term is maximised using an optimisation algorithm such as
conjugate gradients. Once optimised, prediction is then performed
using Eqs. (13)–(15). The reader is referred to Rasmussen (2004)
and Rasmussen and Williams (2006) for additional details regarding
GPR.

The holistic estimate for a test frame is the sum of the group
size estimates. If the blobs in a test frame are enumerated by n,
and the group estimates are denoted flng, then the holistic crowd
estimate for that frame is:

e ¼
X

n

ln ð18Þ
An additional group tracking module is used to smooth the esti-
mate as outlined in Ryan et al. (2012).

4. Multi camera crowd counting

The algorithm proposed in Section 3 is scene invariant, and
therefore lends itself naturally to crowd counting across multiple
cameras in a single environment. In this scenario, the same area
is monitored using two or more cameras, with some potential
overlap between the views. It is this overlap which presents a chal-
lenge in reconciling the crowd counts across all viewpoints.

A naive approach to multi camera crowd counting would be to
take the sum of the crowd counts from each viewpoint. However,
some pedestrians will appear in two or more cameras and will
therefore be counted multiple times. One approach to deal with
this scenario is to attempt to match groups between viewpoints
and perhaps to identify individuals within groups. A complication
with this approach is that groups segmented in one viewpoint will
not necessarily correspond to those groups segmented in another.
This is observed in Fig. 2; the ‘groups’ that will be segmented from
one angle are significantly different from another.

We seek to avoid the difficult problem of detecting individuals
or matching blobs of various configurations. Two modifications to
the existing algorithm of Section 3 are proposed which take into
account the overlap between the viewpoints:

1. Density map modification: This approach modifies the den-
sity map, S, in regions of overlap so as to effectively com-
pensate for the ‘double-up’ that occurs when a person is
visible in more than one camera. This is done by reducing
the density assigned to pixels in overlap regions. Counting
is then performed as a subsequent step using this modified
density map.

2. Pixel density assignment: This approach leaves the density
map unaltered, so that the system described in Section 3
operates unchanged. Instead, crowd densities are modified
after counting has been performed, on a pixelwise basis.

Both approaches rely on the construction of an overlap map, which
provides a measure of how much of an object centred around a
pixel is visible within other viewpoints.
The section is structured as follows: Section 4.1 describes the
overlap map; Section 4.2 discusses the first approach, density
map modification; Section 4.3 describes the second approach, pixel
density assignment; and Section 4.4 discusses some alternative
baseline approaches.

4.1. The overlap map

In a multi camera network there will be several video streams
corresponding to the various cameras in the facility. Let the cam-
eras monitoring a space be enumerated by v. This notation will
be used as a superscript on the existing notation.

First we consider the pixel coordinates ði; jÞ in the image plane
of camera v, around which a hypothetical object is centred. The cyl-
inder model described in Section 3.1 is used for this purpose, with
radius r ¼ 0:25 m and height h ¼ 1:7 m in real world
measurements.

Using camera calibration, let ði; jÞv!u denote this object’s centre
in the image plane of camera u. That is, ði; jÞv!u denotes the conver-
sion of an object’s centre in image plane v to its centre in image
plane u.

Let us also define Rv
i;j as the region occupied by a cylinder model

centred at ði; jÞ in the image plane of camera v. jRv
i;jj represents the

area of the cylinder model when projected into image plane v. We
also use Mv to denote the region of interest mask for viewpoint v.
The intersection of these regions in the image plane is Rv

i;j \Mv , and
this represents the portion of the model which lies within the re-
gion of interest. The fraction of the model within the ROI is
therefore:

jRv
i;j \Mv j
jRv

i;jj
ð19Þ

The cylinder model Rv
i;j can be projected into another viewpoint, u,

and this is denoted Ru
ði;jÞv!u . The overlap map provides a measure

for how much of this cylinder, Rv
i;j, is projected into other views.

The overlap map for viewpoint v is therefore:

Ov
i;j ¼

X
8u–v

jRu
ði;jÞv!u \Muj
jRu
ði;jÞv!u j

ð20Þ

This is the value of the overlap map at pixel ði; jÞ in view v. The sum-
mation is taken across all other viewpoints, enumerated by u, and
the summand is the fraction of the cylinder model (centred around
pixel ði; jÞ in view v) projected into the other viewpoints, u.

For example, if an object centred at ði; jÞ in viewpoint v is not
projected into any other viewpoints, there is no overlap and hence
Ov

i;j ¼ 0. However, if 50% of the object is projected into another
viewpoint, then Ov

i;j ¼ 0:5.
In some cases there may be more than two viewpoints. Eq. (20)

is taken as a summation across all other viewpoints, so that the to-
tal number of projections of the cylinder model into other view-
points is included in the calculation. Fig. 2 illustrates this. The
pedestrian labelled ‘4’ in View 2 (Fig. 2(b)) is projected 100% into
both other views (Figs. 2(a) and 2(c)); therefore the value of the
overlap map in View 2 is 2.0 at this person’s centroid.

The overlap map provides a measure of how much of an object
centred at a particular pixel is visible in the other viewpoints. This
enables us to compensate for over-estimation of the crowd in re-
gions of overlap, as described in Sections 4.2 and 4.3.

4.2. Density map modification

Given a fully trained crowd counting system, as described in
Section 3, we seek to perform counting across multiple viewpoints.
The method proposed in this section is called density map modifi-
cation because it modifies the density map, S, in regions of overlap.



(a)  View 1

(c)  View 2

(e)  View 3

(b)  Cutoff ROI for View 1

(d)  Cutoff ROI for View 2

(f)  Cutoff ROI for View 3

Fig. 2. The PETS 2009 database with ROIs highlighted and a sample of manually-labelled pedestrian annotations. Pedestrians 1–3 indicate unique coverage areas, while
pedestrian 4 indicates an overlap region.
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(The density map was originally described in Section 3.1.) Let Dv to
denote the modified version of the original density map, Sv , as
follows:

Dvði; jÞ ¼ Svði; jÞ
1þ Ov

i;j

ð21Þ

The denominator contains two terms, Ov
i;j, which represents the pro-

jection of an object into other viewpoints, and ‘1’, which represents
the object’s presence in the current viewpoint, v.

If an object centred at ði; jÞ in viewpoint v is 100% visible in an-
other viewpoint u, then the value of the overlap map will be
Ov

i;j ¼ 1, so that the denominator of Eq. (21) is exactly 2, resulting
in a halving of the original density map’s value. This compensates
for the ‘double-up’ which would otherwise have occurred by
counting the object twice. A smaller compensation will be applied
when an object is only partially visible in another viewpoint, and
no compensation is applied when the overlap is zero. This is due
to the way in which the overlap map is calculated (Eq. (20)), which
may be fractional when a cylinder model is only partially projected
into another viewpoint.

The density map modification described in Eq. (21) is only
applied after the system has been fully trained on a number of
individual viewpoints, but prior to the system being deployed
across a multi camera environment. Once the density map has
been modified, the crowd estimate for viewpoint v is denoted
êv so that the holistic estimate across all viewpoints can be
summed directly:

e ¼
X

v
êv ð22Þ

This is the global count for the number of pedestrians in the scene.
The value of êv no longer provides a meaningful representation of
the number of people in viewpoint v due to the modification of
the density map.

4.3. Pixel density assignment

This method does not alter the density map, and instead al-
lows the system to operate as intended, performing overlap
compensation as a subsequent step. The ‘crowding density’ at
each pixel is utilised to modify the crowd count in a pixelwise
manner.

The crowding density applied to a pixel is calculated as follows.
Let lv

n denote the crowd estimate for blob n in viewpoint v. The set
of pixels belonging to this blob is denoted Bv

n , and Cv ði; jÞ denotes
the identity of the blob to which pixel ði; jÞ belongs. Finally, the
‘crowding density’ at pixel ði; jÞ is calculated by:
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dvði; jÞ ¼ Fvði; jÞSvði; jÞP
ði0 ;j0Þ2Bv

Cv ði;jÞ
Svði0; j0Þ

lv
Cv ði;jÞ ð23Þ

where Fv denotes the foreground detection result (with 0 and 1 rep-
resenting the background and foreground pixels, respectively). In
this way, the crowd count for blob Cvði; jÞ is split between its con-
stituent pixels, weighted by the density map Sv to assign higher
crowd density to more distant points in the scene to account for
perspective.

Given this pixelwise crowd density, the overlap map is subse-
quently used to modify the crowd density in order to compensate
for overlap between cameras and to avoid counting people multi-
ple times. Let us use dv ði; jÞ to denote the modified version of the
original crowding density, dv ði; jÞ, as follows:

dvði; jÞ ¼ dvði; jÞ
1þ Ov

i;j

ð24Þ

The denominator in Eq. (24) serves the same purpose as in Eq. (21).
The holistic count across all viewpoints is therefore the summation
of all of the modified crowding densities across all viewpoints:

e ¼
X

v

X
ði;jÞ

dvði; jÞ ð25Þ

This is the global count for the number of pedestrians in the scene.

4.4. Baseline approaches

This section describes two additional approaches for crowd
counting across multiple viewpoints, against which the proposed
methods in Sections 4.2 and 4.3 will be compared.

The first approach is referred to as the ‘naive’ method, in which
the crowd counting algorithm of Section 3 operates unchanged,
and the total crowd count is defined as the sum of the crowd
counts ev from each individual camera:

e ¼
X

v
ev ð26Þ

It is expected that this approach will overestimate the true crowd
size due to camera overlap. An example of camera overlap in a
three-camera setup is shown in Fig. 2. The labelled annotations of
four pedestrians indicate the regions which are unique to each
viewpoint, as well as an overlap region.

The second approach is referred to as the ‘cutoff’ method, in
which the ROI for each viewpoint is intentionally cut off to avoid
any overlap between the viewpoints. This is based on a hypothet-
ical straight line along the ground plane which is used to separate
the views, as shown in Fig. 2.

Although the cutoff method is straightforward to construct for
our experiments, it may not always be as easy to segment an arbi-
trary number of viewpoints from multiple angles using this
technique.
1 The notation Rv
p in this section is used to represent the template of person p

projected into image plane v, whereas the use of Rv
i;j in Section 3.1 was used to

represent a template centred around pixel ði; jÞ in image plane v.
5. Evaluation protocol and data

The predictive performance of the crowd counting algorithm is
evaluated using three criteria: the mean absolute error (MAE), the
mean square error (MSE) and mean relative error (MRE). These met-
rics are commonly used within the field for evaluating system per-
formance (Davies et al., 1995; Lempitsky and Zisserman, 2010;
Chan et al., 2008; Conte et al., 2010).

These metrics compare the crowd estimate to the ground truth.
The definition of ground truth within a multi camera environment
is discussed in Section 5.1. The datasets used in this evaluation are
described in Section 5.2.
5.1. Ground truth annotation

In a single camera environment, the definition of ground truth
is relatively straightforward: the number of pedestrians within
the region of interest is taken as the ground truth, with fractional
counts being assigned to pedestrians who are partially within the
ROI (Ryan et al., 2012). In the case of multiple cameras, a pedes-
trian may be partially visible in more than one camera, complicat-
ing the definition of ground truth. This section defines holistic
ground truth in a multi camera environment to be the maximum
fraction of person to be visible within any camera in the
environment.

Each person, enumerated by p, is annotated with a real world
coordinate, ðx; y; zÞ with z ¼ h

2, located at approximately the centre
of their body. A cylindrical pedestrian template is projected around
this point into each of the camera viewpoints, occupying a region
in image plane v which we denote Rv

p .1

The boundary of the pedestrian template, Rv
p , roughly covers the

person in each viewpoint (Fig. 2). We calculate the ‘quantity’ of
person p within each region of interest mask Mv :

Qv
p ¼
jMv \ Rv

p j
jRv

p j
ð27Þ

We can then determine the maximum quantity of person p within
the scene (across all viewpoints):

Qp ¼max
v

Qv
p ð28Þ

Thus the holistic ground truth for the scene is taken to be:

Q ¼
X

p

Qp ð29Þ

This definition of ground truth is used for evaluating the perfor-
mance of the proposed algorithm in Section 6.2.

5.2. Datasets

Seven viewpoints were used to evaluate the scene invariant
capabilities of the proposed algorithm.

1. View 1 from the PETS 2009 dataset introduced at the Eleventh
IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance (PETS, 2009). This dataset was also
used subsequently at the PETS 2012 workshop (PETS, 2012).

2. View 2 from the PETS 2009 dataset.
3. View 3 from the PETS 2006 dataset introduced at the Ninth IEEE

International Workshop on Performance Evaluation of Tracking
and Surveillance (PETS, 2006).

4. View 4 from the PETS 2006 dataset.
5. Camera 3 from the QUT camera network.
6. Camera 5 from the QUT camera network.
7. Camera 8 from the QUT camera network.

These datasets are summarised in Table 1.
The PETS 2009 database includes sequences for evaluating

crowd counting systems, and the video is provided as a resolution
of 768� 576 pixels and �7 fps in RGB colour format. Example
frames from Cameras 1 and 2 are shown in Fig. 2. The PETS 2006
database is designed to evaluate object tracking algorithms and
abandoned luggage detection. As the sequences show pedestrians
passing through the scene it is suitable for person counting. The
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video is provided at a resolution of 720� 576 pixels and 25 fps in
RGB colour format.

To supplement the existing public datasets, a new database has
been developed containing footage obtained from the Queensland
University of Technology’s campus. This database is referred to as
‘QUT’ and contains data selected from a camera network installed
on a single floor of a building.

This database contains three challenging viewpoints, which are
referred to as Camera 3 (Fig. 1(a)), Camera 5 (Fig. 1(b)) and Camera
8 (Fig. 1(c)). The sequences contain reflections, shadows and
difficult lighting fluctuations, which makes crowd counting difficult.

Previous crowd counting datasets have been substantially
shorter in length than those included in the QUT database. For
example, PETS 2009 contains crowd counting sequences just over
200 frames in length. Although these resources are extremely valu-
able for testing crowd counting algorithms, they do not adequately
capture the long-term performance of a system over varying con-
ditions. For example, if a system performs poorly on one particular
frame, it is likely that the preceding and subsequent frames will
suffer from the same vulnerability. On shorter sequences this
may lead to biased results that do not adequately describe a
system’s true performance capabilities.

In order to combat this problem, the QUT datasets are anno-
tated at sparse intervals: typically 100–400 frames apart depend-
ing on crowd variation and sequence length. Testing is then
performed by comparing the crowd size estimate to the ground
truth at these sparse intervals, rather than at every frame. This clo-
sely resembles the intended real-world application of this technol-
ogy, where an operator may periodically ‘query’ the system for a
crowd count. Although the human operator does not require this
information from every frame, the system should at least provide
accurate results whenever it is requested.

Due to the difficulty of the environmental conditions in these
scenes, the first 400–500 frames of each sequence is set aside for
learning the background model.

The following cross validation procedure is followed to evaluate
system performance across various configurations:

1. Seven datasets are annotated with ground truth data.
2. One dataset is selected and set aside for testing. The pro-

posed crowd counting system is trained using ground truth
from the other six datasets. Testing is then performed on
the selected test dataset. Error metrics are calculated across
all frames: mean absolute error (MAE), mean square error
(MSE) and mean relative error (MRE) are reported.

3. This procedure is repeated for all datasets, by rotating the
training and testing sets. Error metrics are then combined
across all datasets using average rank and average error,
with equal weighting given to each dataset.
Table 1
Summary of the various conditions in the benchmark datasets (PETS, 2006, 2009).

PETS-09, View 1 PETS-09, View 2 PETS-06, View 3

Frames 1565 221 6422
Sequences 5 1 2
Train frames 20 11 51
Test frames 1565 22 51
Frame rate �7 �7 25
Resolution 768� 576 768� 576 720� 576
Colour RGB RGB RGB
Location Outdoor Outdoor Indoor
Shadows Yes Yes Yes
Reflections No No No
Loitering No No Yes
Crowd size 0 to 42 0 to 43 0 to 5
Due to the variation in error rates on different viewpoints, those
datasets with larger fluctuations tend to dominate the mean error
calculation. For this reason the various system configurations are
ranked in order of performance, and the average ranking across
all datasets is reported. For completeness the mean error rates
are also reported. These results are presented in Section 6.1.

Five viewpoints were used to evaluate the proposed multi cam-
era crowd counting algorithm: Views 1–3 from the PETS 2009
database (PETS, 2009); and Views 3 and 4 from the PETS 2006 data-
base (PETS, 2006). These datasets feature crowds of size 1 to 43
people in various lighting conditions and differing camera angles.
The PETS datasets are used because the sequences are captured
at the same location simultaneously and are therefore suitable
for multi camera crowd counting. These results are presented in
Sections 6.2 and 6.3.
6. Evaluation

6.1. Scene invariant evaluation

In this section, K-fold cross validation is used to evaluate a num-
ber of feature sets and regression models for scene invariant crowd
counting. Section 6.1.1 evaluates the feature sets and Section 6.1.2
evaluates the regression models. Section 6.1.3 compares the pro-
posed algorithm to existing scene-specific methods.
6.1.1. Feature evaluation
The proposed scene invariant algorithm is trained on multiple

viewpoints, which serve as a bank of examples, so that future
crowd counting can be performed on an unseen viewpoint without
any additional training data being provided for that viewpoint.

Aside from size based features, it is unclear how well other
types of features (shape, edges and keypoints) will scale between
viewpoints. This section assesses various feature combinations in
order to determine the optimal feature set for scene invariant
crowd counting.

As described in Section 3.2, features are divided into the follow-
ing categories: size, shape, edges and keypoints. Various combina-
tions of features are assessed using the evaluation procedure of
Section 5.2 in order to determine the most accurate feature sets.
Fifteen different combinations of features are listed in Table 2.

Error metrics were calculated for each dataset, and the feature
sets were ranked from 1 (lowest error rate) to 15 (highest). The
average rank for each feature set across all datasets is reported in
Table 2. For example, ‘keypoint’ features taken alone attained an
average rank of 13.0 (out of 15) in terms of MAE, indicating consis-
tently poor performance across all datasets. This is also seen for
‘shape’ features. A better ranking is observed when multiple
PETS-06, View 4 QUT, Camera 3 QUT, Camera 5 QUT, Camera 8

6422 3100 10,000 6100
2 1 1 2
50 7 28 7
50 30 57 40
25 25 25 25
720� 576 704� 576 352� 288 704� 576
RGB RGB RGB RGB
Indoor Indoor Indoor Indoor
Yes Yes Yes Yes
No No No Yes
Yes Yes Yes Yes
0 to 7 4 to 21 3 to 23 2 to 20



Table 2
Average rank across all seven datasets, when features are ranked from 1 to 15 on each
dataset. Values shown are not actual error rates, but rather an average ranking.

Features Average rank

MAE MSE MRE

Size 8.14 8.43 6.86
Shape 12.43 12.86 12.14
Edges 9.57 10.71 9.43
Keypoints 13.00 13.29 13.86
Size, Shape 8.57 8.14 8.29
Size, Edges 6.14 5.86 5.71
Size, Keypoints 5.71 5.14 5.57
Shape, Edges 8.00 8.14 7.57
Shape, Keypoints 10.71 10.43 11.00
Edges, Keypoints 10.57 10.71 11.14
Size, Shape, Edges 4.86 4.86 5.14
Size, Shape, Keypoints 5.57 5.43 6.43
Size, Edges, Keypoints 5.14 5.00 5.57
Shape, Edges, Keypoints 7.71 7.43 7.29
Size, Shape, Edges, Keypoints 3.86 3.57 4.00
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features are used (especially when size is included). Best perfor-
mance is seen when all features are used.

Table 3 lists the average error rates across all datasets, weighted
equally, when all features are used. The mean absolute error is
1.351 and the mean relative error is 15.92%. This falls within the
20% threshold of acceptability suggested by Regazzoni et al.
(1993). The PETS 2006 datasets do exceed this threshold, although
this is due primarily to their small crowds of only 1–7 people,
rather than inaccurate counting results; the mean absolute error
rate is less than 0.5 for these datasets.

Fig. 3 plots the estimate of the proposed algorithm (using all
features) against the ground truth for a number of sequences from
the benchmark datasets.

These results provide strong support for the proposed scene
invariant algorithm. The evaluation has demonstrated that the
use of all features consistently outperformed any subset thereof.
6.1.2. Regression model evaluation
In this section, K-fold cross validation is used to evaluate a num-

ber of regression models used to perform the crowd estimation. For
comparison we use Gaussian process regression (GPR) as proposed
in Section 3.3; ordinary least squares linear regression (linear); K-
nearest neighbours (KNN) with K ¼ 1;2;4;8;16;32; and a neural
network (NN) with a Sigmoid activation function and one hidden
input layer (containing 4, 8, 16 or 32 neurons). In total there are
12 regression models with various parameters. These regression
models have been used previously in various crowd counting
applications such as Kong et al. (2006), Davies et al. (1995), and
Chan et al. (2008).

Error metrics were calculated for each dataset, and the regres-
sion models were ranked from 1 to 12. The average rank for each
regression model across all seven datasets is reported in Table 4.
Table 3
Error rates for all datasets when all features are used. The average error rate across all
datasets is also shown. Each dataset is weighted equally.

Dataset MAE MSE MRE

PETS 2009, View 1 1.321 4.250 10.32%
PETS 2009, View 2 3.365 17.514 9.55%
PETS 2006, View 3 0.405 0.495 24.98%
PETS 2006, View 4 0.487 0.441 22.20%
QUT, Camera 3 1.574 3.506 14.03%
QUT, Camera 5 0.886 1.524 12.17%
QUT, Camera 8 1.448 3.625 18.20%

Average 1.351 4.479 15.92%
Gaussian process regression consistently ranks highest, with an
average rank of 2.43 (out of 12) in terms of MAE. This is followed
by linear regression (average rank 4.57 in terms of MAE) and K-
nearest neighbours.

These results provide very strong support for the use of Gauss-
ian process regression in the proposed algorithm, compared to lin-
ear, KNN or neural network regression.
6.1.3. Comparison to other algorithms
In this section the performance of the proposed system is as-

sessed in comparison to other algorithms in the literature. Note
that these algorithms are scene-specific, and therefore training
and testing take place on the same viewpoint (with different se-
quences used for training and testing). By contrast, the proposed
algorithm is trained on a bank of viewpoints and tested on an un-
seen one. The following algorithms are evaluated:

1. Chan (Chan et al., 2008; Chan and Vasconcelos, 2009). Bidi-
rectional segmentation is performed using dynamic textures.
Holistic features are used to count the number of pedestrians
moving in each direction, from which a holistic count is
obtained.

2. Albiol (Albiol and Silla, 2009; Conte et al., 2010). Moving cor-
ner points are extracted and linear regression is applied on a
holistic level.

3. Conte (Conte et al., 2010). This is an extension of Albiol’s
work: moving SURF points are clustered and regression is
applied to these clusters on a local level.

4. Kong (Kong et al., 2006). Blob size histograms and edge angle
histograms are accumulated on a holistic level.

5. Local Features. This refers to the scene-specific version of the
proposed algorithm; training and testing takes place on the
same viewpoint. The full feature vector is used (size, shape,
edges, keypoints).

6. Holistic Features. This refers to the equivalent holistic version
of ‘Local Features’. In this approach, feature extraction and
regression takes place on the holistic level. For example,
the area feature is computed as A ¼

P
nAn, where An is the

area of blob n as defined in Eq. (2). All holistic features are
computed in this manner. The full feature vector is used
(size, shape, edges, keypoints).

7. Scene invariant. This refers to the proposed algorithm.

The PETS 2009 database (PETS, 2009) is used to compare these
algorithms, as it has been widely used by various authors for eval-
uating crowd counting performance. Chan’s results were reported
in Chan and Vasconcelos (2009), and Albiol and Conte’s results
were reported in Conte et al. (2010).

For this evaluation, Kong’s algorithm was implemented as faith-
fully as possible to Kong et al. (2006), however some assumptions
were necessary. Although Kong used a bin width of 500 for the
blob size histogram, this value is not be suitable for all datasets
due to differences in image resolution and camera distance with
respect to the scene. Instead, the bin width is set to roughly 2

3 of
the size of a person in the scene, so that smaller blobs (noise) are
assigned to the first histogram bin and larger groups occupy the
other bins. This provides good separation between different blob
sizes, as is the intent of the algorithm. The bin width is calculated
by positioning a pedestrian template at the centre of an image and
taking the sum of weighted pixels belonging to the template, the
result of which is multiplied by 2

3. Six bins are used for the blob size
histogram, and eight blobs are used for the edge angle histogram,
as proposed by the author in Kong et al. (2006). Kong proposed
the use of neural networks and linear regression. These regression
models are evaluated in addition to GPR for completeness.
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(a) PETS 2009, View 1.

(b) PETS 2006, View 4.
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Fig. 3. Scene invariant crowd counting results on a number of sequences from the benchmark datasets described in Section 5.2.

Table 4
Average rank across all datasets, when regression models are ranked from 1 to 12 on
each dataset. Values shown are not actual error rates, but rather an average ranking.

Regression model MAE MSE MRE

GPR 2.43 2.71 2.43
Linear 4.57 4.43 4.71
KNN (K = 1) 6.14 7.00 6.14
KNN (K = 2) 5.43 5.43 5.00
KNN (K = 4) 4.57 5.00 4.57
KNN (K = 8) 5.29 4.86 5.14
KNN (K = 16) 5.14 5.00 5.43
KNN (K = 32) 4.71 4.86 4.57
NN (4) 10.29 9.86 10.29
NN (8) 9.71 9.71 9.86
NN (16) 9.14 8.71 9.43
NN (32) 10.57 10.43 10.43
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The proposed algorithm, ‘Scene Invariant’, was evaluated by
training the system on the six other viewpoints listed in Table 1,
and then testing on PETS 2009, View 1. The scene-specific ap-
proaches, ‘Local Features’ and ‘Holistic Features’, were trained
and tested on the same viewpoint (with different sequences being
used for training and testing).

Results are presented in Table 5. For sequence 13-57, the best
performance is observed with the use of ‘Local Features’, followed
by Chan’s algorithm and Conte’s algorithm. These are all scene-
specific approaches. The proposed scene invariant algorithm at-
tains a MRE of 11.30% and outperforms the remaining approaches
(Albiol, Kong and ‘Holistic Features’). These results indicate that
the proposed algorithm provides similar performance to existing
methods on this sequence.

For the remaining sequences (13-59 and 14-06), the proposed
scene invariant algorithm outperforms the other methods in terms
of all error metrics. This is also observed when results are averaged
across all frames from all sequences: the proposed algorithm out-
performs the other methods, with a MAE of 2.328 and MRE of
11.49%.



Table 5
Results of various systems on the PETS 2009 dataset (sequences 13-57, 13-59 and 14-06). The average performance across all frames of these sequences is also reported. See text
for a description of each algorithm. (Note that the results reported by Chan et al. (2009) for sequence 14-06 used a smaller ROI than the other sequences.)

Algorithm 13-57 13-59 14-06 All frames

MAE MSE MRE MAE MSE MRE MAE MSE MRE MAE MSE MRE

Chan 2.308 8.362 – 1.647 4.087 – 4.328 44.159 – 2.680 17.661 –
Albiol 2.800 – 12.60% 3.860 – 24.90% 5.140 – 26.10% 3.895 – 21.16%
Conte 1.920 – 8.70% 2.240 – 17.30% 4.660 – 20.50% 2.867 – 15.40%
Kong, Linear 4.003 24.344 17.21% 1.746 5.223 12.68% 4.873 41.032 22.90% 3.446 22.453 17.29%
Kong, NN (8) 2.750 10.520 14.09% 2.088 7.665 14.49% 4.120 24.559 22.27% 2.925 13.738 16.72%
Kong, NN (16) 2.655 12.603 11.60% 3.055 12.806 21.74% 6.235 65.358 23.51% 3.886 28.671 18.89%
Kong, GPR 2.600 10.846 12.47% 2.515 10.078 16.58% 6.751 73.729 24.89% 3.828 29.631 17.73%
Local Features 1.327 3.081 6.26% 1.684 4.591 12.19% 4.963 41.449 20.89% 2.559 15.262 12.85%
Holistic Features 4.080 27.168 15.52% 1.678 4.599 11.76% 6.696 71.943 27.16% 4.000 32.539 17.68%
Scene Invariant 2.576 10.115 11.30% 1.269 2.317 9.14% 3.326 15.776 14.50% 2.328 8.996 11.49%
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These results indicate that the proposed methodology performs
competitively with existing methods when assessed on individual
sequences of the PETS 2009 dataset, and outperforms other meth-
ods on two of these sequences (13-59, 14-06), despite being
trained on different viewpoints. This is most likely due to the
greater quantity and wider variety of the training data which is
available from the other viewpoints, leading to improved
generalisation.

6.2. Multi camera evaluation

In this section the multi camera crowd counting algorithm is
evaluated on two-camera environments using the PETS 2006 and
PETS 2009 datasets. The performance of these algorithms is evalu-
ated against the definition of ground truth described in Section 5.1.
The density map modification of Section 4.2 is referred to as the
‘map’ method, and the pixel density assignment of Section 4.3 is
referred to as the ‘pixel’ method. We also compare to the ‘naive’
and ‘cutoff’ methods of Section 4.4.

Comparison to other algorithms is not possible because existing
methods are scene-specific and do not operate across multi camera
networks.

6.2.1. PETS 2006 results
The PETS 2006 database provides camera calibration for each of

its viewpoints, and Views 3 and 4 were selected because they pro-
vide the best coverage of the scene with some overlap. Two se-
quences from these cameras, S1 and S5, were chosen because
they contain the largest crowds.

A twofold cross validation procedure was used to assess perfor-
mance on this database. The system was first trained on sequence
S5 and tested on sequence S1, and then vice versa. Average results
across all frames in both sequences are then reported. Results are
displayed in Table 6 for all four algorithms.

The proposed algorithms operate with a mean absolute error of
0.446 and 0.388 for the map and pixel methods, respectively. The
mean relative error does not exceed 20% for either algorithm. By
comparison, the naive and cutoff methods operate with a mean
absolute error of 0.678 and 0.722, respectively, and the MRE of
these methods exceeds 20%.

The results are also plotted in Fig. 4(a). As expected, the naive
method overestimates the crowd size when pedestrians pass
through the overlap region. By contrast the cutoff methods tends
to underestimate the crowd during this time. Both the map and
pixel methods give suitable results.

6.2.2. PETS 2009 results
Camera calibration is provided for multiple viewpoints of the

PETS 2009 database, and Views 1 and 2 were selected due to the
wide coverage and overlap that they provide. Sequences 13-57
and 13-59 were selected for evaluation because these were specif-
ically captured for the purpose of evaluating crowd counting algo-
rithms. These datasets contain much larger crowds than the PETS
2006 database.

Cross validation was performed using the sequences 13-57 and
13-59, and the results of this analysis are shown in Table 6. The
proposed algorithms achieve a mean absolute error of 1.173 and
1.697 for the map and pixel methods, respectively. By comparison
the naive method reports a MAE of 6.635 due to severe overestima-
tion of the crowd size due to overlap regions. The cutoff method
achieves a MAE of 1.631 which is comparable to the pixel method.
Any errors which may occur within the cutoff region (as pedestri-
ans cross from the ROI of one viewpoint to another) are minimal
compared to the overall crowd size. Hence the cutoff method per-
forms relatively well on the PETS 2009 database compared to the
PETS 2006 database. The best performance across all three error
metrics is observed for the map method.

The results are plotted in Fig. 4(b). The naive method overesti-
mates the crowd size severely, while good performance
(MRE < 10%) is observed for the other methods.

6.3. Scene invariant and multi camera evaluation

In this section, scene invariance is combined with multi camera
crowd counting, and the proposed algorithm is evaluated on a
three-camera environment using the PETS 2009 database.

Training is performed using the QUT datasets described in Sec-
tion 5.2, obtained from Cameras 3, 5 and 8 of the QUT camera net-
work. Feature normalisation is performed as described in
Section 3.1 to achieve scene invariance. Testing is then performed
on Views 1–3 of the PETS 2009 database, for sequences 13-57 and
13-59. The ROIs used for this evaluation are shown in Fig. 2.

Table 7 presents the results of this evaluation. The proposed
map and pixel methods attain mean absolute error rates of 1.756
and 2.665, respectively. Both approaches achieved MRE < 10%

indicating highly accurate performance. These approaches both
outperform the cutoff method which achieved an MRE of 14.34%.
This is due to the use of multiple ROI cutoffs within a three-camera
environment, which provide imperfect separation between cam-
eras: humans are 3D objects and therefore it is difficult to achieve
true separation using hypothetical lines on the ground plane. The
compensation provided by the overlap map (Section 4.1) appears
to provide superior crowd counting performance in a complicated
three-camera environment such as this.

Results for this experiment are plotted in Fig. 5. These results
provide strong support for both the scene invariant and the multi
camera crowd counting algorithms proposed in this paper.

6.4. Processing speed

The processing speed of the proposed algorithm is reported in
Table 8. These algorithms are implemented in C++ and the code
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Fig. 4. Results of multi camera crowd counting using Views 3 and 4 of the PETS 2006 dataset and Views 1 and 2 of the PETS 2009 dataset.

Table 6
Results of multi camera crowd counting using Views 3 and 4 of the PETS 2006 dataset and Views 1 and 2 of the PETS 2009 dataset.

Training Testing Map method Pixel method Naive method Cutoff method

MAE MSE MRE MAE MSE MRE MAE MSE MRE MAE MSE MRE

PETS 2006
S5 S1 0.343 0.217 18.74% 0.269 0.145 14.34% 0.663 1.166 31.40% 0.545 0.780 26.23%
S1 S5 0.542 0.472 19.00% 0.500 0.472 16.03% 0.691 0.963 26.47% 0.888 1.739 28.82%

All frames 0.446 0.349 18.88% 0.388 0.314 15.21% 0.678 1.061 28.86% 0.722 1.275 27.57%

PETS 2009
13-59 13-57 0.879 1.715 3.65% 2.313 8.438 8.60% 7.378 66.919 31.51% 2.262 8.959 8.81%
13-57 13-59 1.443 3.526 8.27% 1.132 1.940 7.53% 5.953 50.568 32.00% 1.054 1.573 6.94%

All frames 1.173 2.660 6.06% 1.697 5.048 8.04% 6.635 58.388 31.77% 1.631 5.105 7.84%
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has not been optimised for speed. In a single camera environment,
all methods are equivalent and operate at 2.56 frames per second
(fps). When extended to 2 cameras, the processing speed is approx-
imately halved: the naive and cutoff methods operate at 1.28 fps,
and the map method operates at 1.18 fps. The pixel method oper-
ates at only 0.78 fps due to the additional overhead in calculating
crowding densities at each pixel (Eqs. (23)–(25)).
When extended to 3 cameras, processing speed is reduced by a
factor of approximately 3 for the map, naive and cutoff methods
(0.81–0.83 fps); and the pixel method is reduced to 0.54 fps.

The main bottleneck in the algorithm is foreground segmenta-
tion, which can be improved significantly using GPU acceleration
as in Pham et al. (2010) for example. Furthermore, multi-threading
programming can be used to process each camera in parallel,



Table 7
Results of multi camera crowd counting using Views 1–3 of the PETS 2009 dataset.

Training Testing Map method Pixel method Naive method Cutoff method

MAE MSE MRE MAE MSE MRE MAE MSE MRE MAE MSE MRE

QUT 13-57 1.977 5.533 6.95% 2.732 8.952 8.89% 21.739 532.523 74.37% 5.207 44.034 24.63%
QUT 13-59 1.554 4.717 5.81% 2.603 7.878 10.25% 16.477 335.754 56.98% 1.236 2.262 4.91%

All frames 1.756 5.107 6.36% 2.665 8.392 9.60% 18.993 429.861 65.30% 3.135 22.240 14.34%
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Fig. 5. Results of multi camera crowd counting using Views 1–3 of the PETS 2009 dataset.

Table 8
Processing speed of the proposed algorithm using 1, 2 and 3 cameras from the PETS
2009 dataset.

Cameras Frame rate (fps)

Map Pixel Naive Cutoff

1 2.56
2 1.18 0.78 1.28 1.28
3 0.81 0.54 0.82 0.83
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eliminating much of the slow-down observed for the multi camera
environments in Table 8.
7. Conclusion

This paper proposed a novel multi camera crowd counting algo-
rithm built upon scene invariance and local image features. The
proposed system utilises camera calibration to scale features be-
tween viewpoints based on a real world reference object, namely
a human sized 3D cylinder model. This is used to calculate the den-
sity map, which is used to weight the features extracted at each
pixel.

Scene invariance was demonstrated by training the system on a
bank of multiple ‘reference’ cameras and then testing it on a new,
unseen viewpoint. Accurate crowd counting results were obtained
for the seven calibrated sequences. Additionally, this paper has
contributed a detailed analysis of various feature types (size,
shape, edges and keypoints) and investigated their suitability for
scene invariant crowd counting. It was found that optimal perfor-
mance was achieved when all features were used. A number of
regression models (GPR, linear, KNN and NN) were also evaluated
and it was observed that GPR provided superior predictive perfor-
mance for our system.

Multi camera crowd counting was proposed by making use of
camera calibration to compensate for regions of overlap. Two algo-
rithms were proposed to count crowds in a multi camera environ-
ment. Density map modification (the map method) alters the
density map in regions of overlap, which modifies the values of
the image features prior to regression. By contrast, pixel density
assignment (the pixel method) performs compensation on a pixel-
wise basis after regression has been performed. Both approaches
are based on the construction of an overlap map which enables a
system to quantify the amount of overlap in any given region of
an image.

Accurate crowd counting results were demonstrated using five
calibrated cameras. The pixel method performed slightly better
on the PETS 2006 database, while the map method performed
better on the PETS 2009 database. Both algorithms outperform
the naive approach and provide similar or better performance
than the ROI ‘cutoff’ method (described in Section 4.4). Both ap-
proaches require some additional computational overhead com-
pared to the naive and cutoff methods. However, the accuracy
is improved by doing so.

Finally, the combination of scene invariance and multi camera
crowd counting demonstrates the efficacy of the algorithms pro-
posed in this paper. Three viewpoints from the QUT camera net-
work were used to train the proposed system, and highly
accurate crowd counting results were observed across Views
1–3 of the PETS 2009 database (with a mean relative error less
than 10%).

Once trained, the proposed scene invariant crowd counting
system does not require any additional training when deployed
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for crowd counting on a new camera. This brings the computer
vision field one step closer toward a ‘plug-and-play’ system
which is pre-trained on a large bank of data from a variety of
cameras, and may be deployed across a multi camera environ-
ment. This technology has many potential applications, including
automatic gathering of business intelligence, crowd safety mon-
itoring and abnormality detection.
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